IEEE Wireless Communications and Networking Conference
25-28 May 2020 // Virtual Conference
Beyond Connectivity: What Comes After 5G

FINAL PROGRAM
REGISTRATION AND VIRTUAL CONFERENCE ACCESS

2020 IEEE WCNC registration is required to attend the virtual conference. Access to the virtual conference have been sent by email. Instructions for Participants, Presenters and Session Chairs can be found on the conference website, https://wcnc2020.ieee-wcnc.org.

CONFERENCE PROCEEDINGS

The conference proceedings have been published electronically and are available for you to download through the conference website. Access instructions have been sent by email.

ZOOM INFORMATION DESK

A virtually-staffed Zoom Information Desk will be available to assist all participants and answer general questions. Please visit the information desk if you:

• Are unable to locate your password to access to the 2020 IEEE WCNC Virtual Conference
• Want to test or practice your presentation on Zoom
• Have general questions about the 2020 IEEE WCNC Virtual Conference Program or the Zoom Platform

BE CONSIDERATE

Please mute your microphone upon entering the virtual conference each day you participate. The conference committee, the speakers, and your fellow attendees thank you for your consideration and cooperation.
PROGRAM-AT-A-GLANCE

Monday, 25 May 2020 - Tutorials / Workshops

<table>
<thead>
<tr>
<th>Time (KST)</th>
<th>Room 1</th>
<th>Room 2</th>
<th>Room 3</th>
<th>Room 4</th>
<th>Room 5</th>
<th>Room 6</th>
<th>Room 7</th>
<th>Room 8</th>
<th>Room 9</th>
<th>Room 10</th>
<th>Room 11</th>
<th>Room 12</th>
<th>Room 13</th>
<th>Room 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 - 10:45</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>12:15 - 14:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>15:30 - 15:45</td>
<td>Break</td>
<td></td>
</tr>
</tbody>
</table>

Tuesday, 26 May 2020 - Main Conference

<table>
<thead>
<tr>
<th>Time (KST)</th>
<th>Room 1</th>
<th>Room 2</th>
<th>Room 3</th>
<th>Room 4</th>
<th>Room 5</th>
<th>Room 6</th>
<th>Room 7</th>
<th>Room 8</th>
<th>Room 9</th>
<th>Room 10</th>
<th>Room 11</th>
<th>Room 12</th>
<th>Room 13</th>
<th>Room 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:20</td>
<td>Opening (Sponsor Commercial/Opening General Chair/SC Chair/TPC Report & Best Paper Award)</td>
<td></td>
</tr>
<tr>
<td>09:20 - 10:00</td>
<td>KNTU-S1: Keynote: Next Steps and Challenges of 5G Network</td>
<td></td>
</tr>
<tr>
<td>10:00 - 10:40</td>
<td>KNTU-S2: Keynote: Challenges and Opportunities of 5G Mobile Edge Cloud</td>
<td></td>
</tr>
<tr>
<td>10:40 - 11:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:00 - 12:30</td>
<td>T1-S1: Millimeter Wave Systems</td>
<td>T3-S2: Deep Learning for Wireless Communications</td>
<td>T3-S3: Energy Efficiency in 5G and HetNets</td>
<td>T2-S1: Multiple Access</td>
<td>T3-S1: Learning 1</td>
<td>T3-S2: Sensor Network and IoT 1</td>
<td>T3-S3: Fog Computing and Networking</td>
<td>T4-S1: Streaming and Video</td>
<td>T4-S2: Security and Privacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30 - 14:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>T1-S4: NOMA (Non-Orthogonal Multiple Access)</td>
<td>T1-S5: NextGeneration Communications</td>
<td>T1-S6: Channel Modeling</td>
<td>T3-S7: Waveform and Modulation</td>
<td>T2-S2: Learning-Assisted Optimization</td>
<td>T3-S4: Localization</td>
<td>T3-S5: Energy Efficiency</td>
<td>T3-S6: Routing</td>
<td>T4-S3: Localization and Tracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30 - 16:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>16:00 - 17:30</td>
<td>T1-S8: Low Latency Communications</td>
<td>T1-S9: Deep Learning for Wireless Communications</td>
<td>T1-S10: Multiple Access and Interference Management</td>
<td>T2-S3: Scheduling and Radio Resource Management</td>
<td>T3-S7: Learning 2</td>
<td>T3-S8: Sensor Network and IoT 2</td>
<td>T3-S9: Device-to-Device Communication</td>
<td>T4-S4: URLLC</td>
<td>T4-S5: Vehicular Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conference will be held in Korea Standard Time

TRACK 1: PHY AND FUNDAMENTALS

- T1-S1: Millimeter Wave Systems
- T3-S2: Deep Learning for Wireless Communications
- T3-S3: Energy Efficiency in 5G and HetNets
- T2-S1: Multiple Access
- T3-S1: Learning 1
- T3-S2: Sensor Network and IoT 1
- T3-S3: Fog Computing and Networking
- T4-S1: Streaming and Video
- T4-S2: Security and Privacy

TRACK 2: MAC AND CROSS-LAYER DESIGN

- T1-S4: NOMA (Non-Orthogonal Multiple Access)
- T1-S5: NextGeneration Communications
- T1-S6: Channel Modeling
- T3-S7: Waveform and Modulation
- T2-S2: Learning-Assisted Optimization
- T3-S4: Localization
- T3-S5: Energy Efficiency
- T3-S6: Routing
- T4-S3: Localization and Tracking

TRACK 3: WIRELESS NETWORKS

- T1-S8: Low Latency Communications
- T1-S9: Deep Learning for Wireless Communications
- T1-S10: Multiple Access and Interference Management
- T2-S3: Scheduling and Radio Resource Management
- T3-S7: Learning 2
- T3-S8: Sensor Network and IoT 2
- T3-S9: Device-to-Device Communication
- T4-S4: URLLC
- T4-S5: Vehicular Networks

TRACK 4: EMERGING TECHNOLOGIES, ARCHITECTURES AND SERVICES

- T1-S10: NOMA-Beyond 5G
- T1-S12: Intelligent Computing and Caching at the Edge
- T1-S13: Future of Wireless Systems
- T1-S14: AERCOMM

DEMO SESSION
PROGRAM-AT-A-GLANCE

Wednesday, 27 May 2020 - Main Conference

<table>
<thead>
<tr>
<th>Time (KST)</th>
<th>Room 1</th>
<th>Room 2</th>
<th>Room 3</th>
<th>Room 4</th>
<th>Room 5</th>
<th>Room 6</th>
<th>Room 7</th>
<th>Room 8</th>
<th>Room 9</th>
<th>Room 10</th>
<th>Room 11</th>
<th>Room 12</th>
<th>Room 13</th>
<th>Room 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:05</td>
<td>Opening Session (WCNC 2021 Introduction)</td>
<td></td>
</tr>
<tr>
<td>09:10 - 09:50</td>
<td>KNWE-S1: Keynote: 6G - A Step Beyond Stretching 5G</td>
<td></td>
</tr>
<tr>
<td>09:50 - 10:30</td>
<td>KNWE-S2: Keynote: Into the Future Wireless</td>
<td></td>
</tr>
<tr>
<td>10:30 - 11:00</td>
<td>Break</td>
<td></td>
</tr>
</tbody>
</table>
| 11:00 - 12:00 | T1-S11: Millimeter-Wave Systems 2
T1-S12: Multiantenna System
T1-S13: Information Theory and Capacity
T2-S4: Resource Allocation
T3-S12: Mobile Edge Computing 1
T3-S13: NOMA (Non-Orthogonal Multiple Access)
T3-S14: Vehicular Network 1
T4-S6: Edge Computing and Caching |
| 12:30 - 14:00 | Lunch |
| 14:00 - 16:00 | T1-S14: Signal Processing for Millimeter-Wave and THz Communications
T1-S15: Networking Application
T1-S16: Resource Management and Optimization
T2-S5: Cross-Layer MAC Design
T3-S15: Mesh, Relay, and Ad Hoc Networks
T3-S16: Measurement and Applications
T4-S7: Learning for Networks
DEMO Session |
| 15:30 - 16:00 | Break |
| 16:00 - 17:30 | T1-S17: 5G Wireless Communications
T1-S18: Signal Detection and Estimation
T1-S19: Energy Efficient Communications
T2-S6: Wireless MAC for 5G
T3-S17: Measurement and Applications 2
T3-S18: Vehicular Network 2 |

Thursday, 28 May 2020 - Main Conference

<table>
<thead>
<tr>
<th>Time (KST)</th>
<th>Room 1</th>
<th>Room 2</th>
<th>Room 3</th>
<th>Room 4</th>
<th>Room 5</th>
<th>Room 6</th>
<th>Room 7</th>
<th>Room 8</th>
<th>Room 9</th>
<th>Room 10</th>
<th>Room 11</th>
<th>Room 12</th>
<th>Room 13</th>
<th>Room 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:05</td>
<td>Opening Session (Best Demo Award)</td>
<td></td>
</tr>
<tr>
<td>09:05 - 10:30</td>
<td>KNTH-S1: Keynote: A Fresh Look at an Old Problem: Network Utility Maximization - Convergence, Delay, and Complexity</td>
<td></td>
</tr>
<tr>
<td>10:40 - 10:40</td>
<td>Break</td>
<td></td>
</tr>
</tbody>
</table>
| 10:40 - 12:10 | T1-S20: Massive MIMO 1
T1-S21: Coding Scheme 1
T1-S22: Performance Analysis 1
T2-S7: Scheduling
T3-S20: UAV (Unmanned Aerial Vehicle) 1
T3-S21: Security and Privacy 1
T3-S22: Resource Management and Optimization 1
T4-S9: Recognition and Prediction
T4-S10: Crowdsourcing and Incentive Mechanism |
| 12:10 - 14:00 | Lunch |
| 14:00 - 15:30 | T1-S23: Machine Type Communications
T1-S24: Polar Code
T1-S25: Performance Analysis 2
T5-S26: Hardware and Implementation
T3-S23: Mobility and Handoff Management
T3-S24: Rate Control and Transport Protocol
T3-S25: Resource Management and Optimization 2
T3-S26: UAV (Unmanned Aerial Vehicle) 2
T3-S27: Security and Privacy 2
T3-S28: Resource Management and Optimization 3
T3-S29: Multi-Connectivity
T3-S30: Satellite Networks
T4-S12: Communications with UAVs |
| 15:30 - 16:00 | Break |
| 16:00 - 17:30 | T1-S27: Massive MIMO 2
T1-S28: Coding Scheme 2
T1-S29: Transceiver Design
T3-S27: UAV (Unmanned Aerial Vehicle) 3
T3-S28: Security and Privacy 3
T3-S29: Hybrid Satellite Networks
T4-S14: Millimeter and Optical Wireless |

End of Program

Conference will be held in Korea Standard Time

TRACK 1: PHY AND FUNDAMENTALS

TRACK 2: MAC AND CROSS-LAYER DESIGN

TRACK 3: WIRELESS NETWORKS

TRACK 4: EMERGING TECHNOLOGIES, ARCHITECTURES AND SERVICES

DEMO SESSION
MESSAGE FROM GENERAL CHAIRS

It is my great honor to welcome you to the IEEE Wireless Communications and Networking Conference (WCNC) 2020 virtual edition. The WCNC 2020 Organizing Committee, with support of IEEE, has been monitoring the evolving COVID-19 pandemic. Since the safety and well-being of all conference participants is a top priority, we have decided to virtually hold the 2020 edition of this conference from the 25th to the 28th of May.

IEEE WCNC is the world premier wireless event that brings together industry professionals, academics, and individuals from government agencies and other institutions. It will provide an opportunity to exchange information and ideas on the advancement of wireless communications and networking technology, especially after the launch of 5G last year. We are proud to continue our tradition with a number of exciting programs at WCNC 2020 under the theme of “Beyond Connectivity: What Comes After 5G”. We are sure you will enjoy our program including keynote speeches, technical sessions, demo sessions, 10 tutorials, and 13 workshops. The keynotes consist of four talks from industrial leaders (Samsung, Huawei, ETRI, and SK Telecom) and two talks from renowned academics.

On behalf of IEEE ComSoc and the WCNC Steering Committee, we would like to take this opportunity to extend our thanks and appreciation to the sponsors for their continued support to the conference, and express our sincere gratitude to the members of the Organizing Committee, TPC members, reviewers, volunteers, and IEEE ComSoc staff for their efforts and contributions to the success of the conference.

South Korea is expected to successfully win first in the big fight against Corona 19. However, we cannot avoid the tunnel of difficulties until the global economy recovers because the world is closely connected. We hope the whole world overcomes this difficult time together. We wish you and your family healthy, and hope to see you all in the face-to-face WCNC 2021 with healthy faces next year.

Sincerely,

General Chair
Saewoong Bahk
(Seoul National University, Korea)
Welcome to the 2020 edition of the IEEE Wireless Communications and Networking Conference (IEEE WCNC 2020)! The spirit of this year's conference is “Beyond Connectivity: What comes after 5G”.

Thanks to the great support of researchers in the global wireless communications and networking community, the conference has originally received 1,093 papers, of which 400 have eventually been accepted with at least 3 rigorous peer reviews. In more details, Track 1 “PHY and Fundamentals” has 144 papers which are presented in 28 Sessions; Track 2 “MAC and Cross-Layer Design” has 36 papers in 7 Sessions; Track 3 “Wireless Networks” has 148 papers in 29 Sessions; and Track 4 “Emerging Technologies, Architectures and Services” has 72 papers in 14 Sessions. In addition, the program is dotted with exciting workshops and special sessions, panels, tutorials, demos and of course our flagship plenary keynotes. 10 workshops received 207 papers, of which 101 have been accepted.

We would like to express our sincere gratitude to 841 TPC members and all the reviewers for their excellent work and enthusiastic support, delivering more than 2,830 reviews with high quality and in a timely manner. In particular, we would like to thank the TPC Vice Chair for Information Systems: Sangheon Pack, and the TPC Track Chairs: Byonghyo Shim, Lingyang Song, Jemin Lee, Daniel B. da Costa, Changhee Joo, Haijun Zhang, Bo Ji, Jianwei Huang, Jeongyeup Paek, Dongxiao Yu, Carlo Fischione, Tony Quek, Kyunghan Lee, Mianxiong Dong, Walid Saad and Theodoros Salonidis, for their dedication and hard work.

We would also like to thank the authors of all the submitted papers. We encourage all of you to attend the virtual conference and do enjoy the high quality presentations! We are looking forward to an exciting conference with many stimulating discussions over keynotes, panels and technical sessions.

Thank you,

Song Chong
(KAIST, Korea)
TPC Chair, IEEE WCNC 2020

Sunghyun Choi
(Samsung Research, Korea)
TPC Chair, IEEE WCNC 2020

Zhisheng Niu
(Tsinghua University, China)
TPC Chair, IEEE WCNC 2020
COMMITTEES

ORGANIZING COMMITTEE

General Chair
Saewoong Bahk (Seoul National University, South Korea)

General Co-Chairs
Youngky Kim (Samsung Electronics, South Korea)
Seung Chan Bang (ETRI, South Korea)

General Vice-Chairs
Seong-Lyun Kim (Yonsei University, South Korea)
Young-June Choi (Ajou University, South Korea)
Il-Gyu Kim (ETRI, South Korea)

General Vice Co-Chair
Kyunghan Lee (Seoul National University, South Korea)

Technical Program Co-Chairs
Song Chong (KAIST, South Korea)
Sunghyun Choi (Samsung Research, South Korea)
Zhisheng Niu (Tsinghua University, China)

TPC Vice-Chair For Information Systems
Sangheon Pack (Korea University, South Korea)

Publication Chair
Jemin Lee (DGIST, South Korea)

Keynote/Panel Co-Chairs
Yoan Shin (Soongsil University, South Korea)
Marwan M. Krunz (University of Arizona, USA)
Jerry (Jung-Min) Park (Virginia Tech, USA)
Matti Latva-aho (University of Oulu, Finland)
Sunwoo Kim (Hanyang University, South Korea)

Industrial Program Co-Chairs
Juho Lee (Samsung Electronics, South Korea)
Moon-Sik Lee (ETRI, South Korea)

Workshop Co-Chairs
Jaehyun Kim (Ajou University, South Korea)
Insoo Sohn (Dongguk University, South Korea)

Tutorial Co-Chairs
Kwang-Soon Kim (Yonsei University, South Korea)
Young-Jin Chun (City University of Hong Kong, China)

Demo Chair
Sanghyo Kim (Sungkyunkwan University, South Korea)

Publicity Chair
Jeongho Kwak (DGIST, South Korea)

Student Grant/Student Program Chair
Bang Chul Jung (Chungnam National University, South Korea)

Local Arrangements Co-Chairs
Hyang-Won Lee (Konkuk University, South Korea)
Sung-Gook Yoon (Soongsil University, South Korea)

Patron Chair
Ki-Hyung Kim (Ajou University, South Korea)

Exhibits Chair
Chan-Byoung Chae (Yonsei University, South Korea)

Webmaster/Social Media Chair
Young-Joo Choi (Ajou University, South Korea)

Finance Chair
Joohyun Lee (Hanyang University, South Korea)

Senior Conference Planner
Tina Gaerlan (IEEE Communications Society, USA)

Treasurer
Bruce Worthman (IEEE Communications Society, USA)

STEERING COMMITTEE

Chair
Halim Yanikomeroglu (Carleton University, Canada)

Past Chair
Khaled B. Letaief
(The Hong Kong University of Science & Technology, Hong Kong)

Members-At-Large
Ali Ghrayeb (Texas A&M University at Qatar, Qatar)
Hikmet Sari (Sequans, France, and NJUPT, China)
Katie Wilson (Santa Clara University, USA)
Hamid Aghvami (King’s College London, UK)
Carles Anton-Haro (CTTC, Spain)
COMMITTEES

TPC CHAIRS AND AREA CHAIRS

TPC Co-Chairs
Song Chong (KAIST, South Korea)
Sunghyun Choi (Samsung Research, South Korea)
Zhisheng Niu (Tsinghua University, China)

Track Co-Chairs
Track 1: PHY and Fundamentals
Byonghyo Shim (Seoul National University, South Korea)
Lingyang Song (Peking University, China)
Jemin Lee (DGIST, South Korea)
Daniel B. da Costa (Federal University of Ceará (UFC), Brazil)

Track 2: MAC and Cross-Layer Design
Changhee Joo (Ulsan National Institute of Science and Technology (UNIST), South Korea)
Haijun Zhang (University of Science and Technology Beijing (USTB), China)
Bo Ji (Temple University, USA)
Jianwei Huang (CUHK, China)

Track 3: Wireless Networks
Jeongyeup Paek (Chung-Ang University, South Korea)
Dongxiao Yu (Shandong University, China)
Carlo Fischione (KTH, Sweden)
Tony Quek (SUTD, Singapore)

Track 4: Emerging Technologies, Architectures and Services
Kyunghan Lee (Seoul National University, South Korea)
Mianxiong Dong (Muroran Institute of Technology, Japan)
Walid Saad (Virginia Tech, USA)
Theodoros Salonidis (IBM T J Watson, USA)

TECHNICAL PROGRAM COMMITTEE

Track 1: PHY and Fundamentals
Ali Abedi (University of Maine, USA)
Chadi Abou-Rjeily (Lebanese American University LAU, Lebanon)
Mari Carmen Aguayo-Torres (Universidad de Malaga, Spain)
Rui Aguiar (University of Aveiro, Portugal)
Yongjun Ahn (Seoul National University, Korea)
Masoud Ardakani (University of Alberta, Canada)
Mohamad Assaad (CentraleSupelec, France)
Edward Au (Huawei Technologies Co., Ltd., Canada)
Giuseppe Avellone (STMicroelectronics, Italy)
Sibi Raj B Pillai (IIT Bombay, India)
Vo Nguyen Quoc Bao
(Posts and Telecommunications Institute of Technology, Vietnam)
Gerhard Bauch (Hamburg University of Technology, Germany)
E. Veronica Belmega (ETIS / ENSEA - UCP - CNRS, France)
Mats Bengtsson (KTH Royal Institute of Technology, Sweden)
Kostas Berberidis (University of Patras, Greece)
Kaiqiu Bian (Peking University, China)
Ezio Biglieri (Universitat Pompeu Fabra, Barcelona, Spain)
Emil Björnson (Linköping University, Sweden)
Ernst Bonek (Vienna University of Technology, Austria)
Alister Burr (University of York, United Kingdom Great Britain)
Seok-Ho Chang (Dankook University, Korea)
Yawgeng Chau (Yuan-Ze University, Taiwan)
Chung Shue Chen (Nokia Bell Labs, France)
Wei Chen (Tsinghua University, China)
Julian Cheng (University of British Columbia, Canada)
Yu Cheng (Illinois Institute of Technology, USA)
Pascal Chevalier (CNAM, France)
Feng-Tsun Chien (National Chiao Tung University, Taiwan)
Hewon Cho (Daegu Gyeongbuk Institute of Science and Technology DGIST, Korea)
A. Chockalingam (Indian Institute of Science, India)
Ji-Woong Choi (DGIST, Korea)
Jun Won Choi (Hanyang University, Korea)
Junil Choi (KAIST, Korea)
Sooyong Choi (Yonsei University, Korea)
Wan Choi (KAIST, Korea)
Domenico Ciouonzo (University of Naples Federico II, IT, Italy)
Roberto Corvaja (University of Padova, Italy)
Laura Cottatellucci (University of Erlangen-Nuremberg, Germany)
Daniel Benevides da Costa (Federal University of Ceara UFC and Area: Telecommunications, Brazil)
Ron Dabora (Ben-Gurion University, Israel)
Lin Dai (City University of Hong Kong, Hong Kong)
Panagiota Demestichas (University of Piraeus, Greece)
Marco Di Renzo (Paris-Saclay University / CNRS, France)
Rui Dinis (Faculdade de Ciências e Tecnologia, University Nova de Lisboa, Portugal)
Dinh-Thuan Do (Ton Duc Thang University, Vietnam)
Octavia Dobre (Memorial University, Canada)
Aleksandar Dogandžić (Iowa State University, USA)
Yunquan Dong
(Nanjing University of Information Science and Technology, China)
Catherine Douillard (IMT Atlantique, France)
Mohammed El-Hajjar
(University of Southampton, United Kingdom Great Britain)
Mohamed El-Tarhuj
(American University of Sharjah, United Arab Emirates)
Taisir Elganiemi (University of Tripoli, Libya, Libya)
Maged Elkaishlan
(Queen Mary, University of London, United Kingdom Great Britain)
Serhat Erkucuk (Kadir Has University, Turkey)
Ivan Fair (University of Alberta, Canada)
Gianluigi Ferrari (University of Parma, Italy)
Inbar Fijalkow

(RETIS / ENSEA - University Cergy-Pontoise - CNRS, France)
Giuseppe Thadeu Freitas de Abreu
(Jacobs University Bremen, Germany)
Zhen Gao (Beijing Institute of Technology, China)
Javier Garcia-Frias (University of Delaware, USA)
Matthieu Gautier (University Rennes, CNRS, IRISA, France)
Samah Ghanem (Independent, Portugal)
Alireza Ghasempour (ICT Faculty, USA)
Gaetano Giunta (University of Roma Tre, Italy)
Siddhartan Gokhansamy (F.W. Olin College of Engineering, USA)
T. Aaron Gulliver (University of Victoria, Canada)
Ridha Hamila (Qatar University, Qatar)
Mohamed Hassan
(American University of Sharjah, United Arab Emirates)
Hiroyuki Hatano (Mie University, Japan)
Kazunori Hayashi (Osaka City University, Japan)
Jianqiang He (Qualcomm Inc., USA)
Yejun He (Shenzhen University, China)
Kenichi Higuchi (Tokyo University of Science, Japan)
Song Nam Hong (Ajou University, Korea)
Xiaolin Hou

(DOCOMO Beijing Communications Laboratories Co., Ltd, China)
Seung-Hoon Hwang (Dongguk University, Korea)
Taewon Hwang (Yonsei University, Korea)
George Iosifidis (Trinity College Dublin, Ireland)
Dharmikam Jayalath
(Queensland University of Technology, Australia)
Sang-Woon Jeon (Hanyang University, Korea)
Yo-Seb Jeon (Princeton University, USA)
Chunxiao Jiang (Tsinghua University, Beijing, China)
Han-Shin Jo (Hanbat National University, Korea)
Michael Joham (Technische Universität München, Germany)
Eduard Jorswieck (Technische Universität Braunschweig, Germany)
Jingon Joung (Chung-Ang University, Korea)
Bang Chul Jung (Chungnam National University, Korea)
George Karystinos (Technical University of Crete, Greece)
Michel Kieffer
(L2S - CNRS - SUPELEC - University Paris-Sud, France)
Dongsun Kim (Daegu Gyeongbuk Institute of Science and Technology DGIST, Korea)
Jinwoon Kim (DGIST, Korea)
Minsu Kim (Daegu Gyeongbuk Institute of Science & Technology DGIST, Korea)
Seungyun Kim (Seoul National University, Korea)
Sundo Kim (Seoul National University, Korea)
Sunwoo Kim (Hanyang University, Korea)
Wonjun Kim (Seoul National University, Korea)
Eleftherios Kofidis (University of Piraeus, Greece)

Ghassan Kraiedy (Notre Dame University - Louaize, Lebanon)
Witold Krzymien (University of Alberta, Canada)
Meng-Lin Ku (National Central University, Taiwan)
Riichi Kudo (NTT, Japan)
Taesoo Kwon
(Seoul National University of Science and Technology, Korea)
Didier Le Ruyet (CNAM, France)
Byungju Lee (Samsung Research, Korea)
Gyujin Lee (Seoul National University, Korea)
Juho Lee (Samsung Electronics, Co., Ltd, Korea)
Jung Hoon Lee (Hankuk University of Foreign Studies, Korea)
Kyoong-Jae Lee (Hanbat National University, Korea)
Namyoung Lee (POSTECH, Korea)
Yuanxin Li (Samsung, USA)
Yunzhou Li (Tsinghua University, China)
Yang-wen Liang (Samsung Mobile Solutions Lab, USA)
Shao-Yu Lien (National Chung Cheng University, Taiwan)
Teng Joon Lim (National University of Singapore, Singapore)
Chin Lin (National Taiwan-Ocean University, Taiwan)
Jia-Chin Lin (National Central University, Taiwan)
Chun-Hung Liu (Mississippi State University, USA)
Hsin-Chin Liu
(National Taiwan University of Science and Technology, Taiwan)
Ming Liu (Beijing Jiaotong University, China)
Tianyu Liu (Peking University, China)
Angelos Livers (Wavelab Inc, USA)
Miguel López-Benitez
(University of Liverpool, United Kingdom Great Britain)
Malamati Louta (University of Western Macedonia, Greece)
Kejie Lu (University of Puerto Rico at Mayaguez, Puerto Rico)
Lu Lu (The Chinese University of Hong Kong, Hong Kong)
Yi Ma (University of Surrey, United Kingdom Great Britain)
Behrouz Maham (Nazarbayev University, Kazakhstan)
Michalis Matthaiou
(Queen's University Belfast, United Kingdom Great Britain)
Neelesh Mehta (Indian Institute of Science, India)
Jan Mietzner
(Hamburg University of Applied Sciences HAW, Germany)
Patrick Mitran (University of Waterloo, Canada)
Mohamed Moustafa (Egyptian Russian University, Egypt)
Wai Ho Mow
(Hong Kong University of Science and Technology, Hong Kong)
Sami Muhaidat (Khalifa University, United Arab Emirates)
Sudarshan Mukherjee (Daegu Gyeongbuk Institute of Science and Technology DGIST, Korea)
Ralf Müller
(Friedrich-Alexander Universität Erlangen-Nürnberg, Germany)
Tolex M. N. Ngatched
(Memorial University of Newfoundland, Canada)
Mort Naraghi-Pour (Louisiana State University, USA)
Majid Naseri Khormuji (Huawei Technologies Sweden AB, Sweden)
Duy Nguyen (San Diego State University, USA)
Hideki Ochiai (Yokohama National University, Japan)
Tobias Oechtering (KTH Royal Institute of Technology, Sweden)
Seong-Jun Oh (Korea University, Korea)
Miao Pan (University of Houston, USA)
Athanassios Panagopoulos
(National Technical University of Athens, Greece)
Ai-Chun Pang (National Taiwan University, Taiwan)
Nikolaos Papandreu (IBM Research - Zurich, Switzerland)
Hyunchel Park (KAIST, Korea)
Hyunggon Park (Ewha Womans University, Korea)
Seok-Hwan Park (Jeonbuk National University, Korea)
Kostas Peppas (University of Peloponess, Greece)
COMMITTEES

Dimitrie Popescu (Old Dominion University, USA)
Charly Pouliiat (INP - ENSEEIHT Toulouse, France)
Shankar Prakriya (Indian Institute of Technology, Delhi, India)
Chenhao Qi (Southeast University, China)
Tianzhu Qiao (Apple, USA)
Redha Radayeh (Texas A&M University-Commerce, USA)
Vasanthan Raghavan (Qualcomm, Inc., USA)
Md. Jahidur Rahman (Qualcomm Technologies, Inc., USA)
B. Sundar Rajan (Indian Institute of Science, India)
Danda Rawat (Howard University, USA)
Taneli Rihonen (Tampere University, Finland)
George Ropokis (CentraleSupélec, France)
Poompat Saengudomlert (Bangkok University, Thailand)
Nikos Sagias (University of Peloponnese, Greece)
Abd Elatif Sattisat (Japanese University, Lebanon)
Yukitoshi Sanada (Keio University, Japan)
Rafael Schaefer (Technische Universität Berlin, Germany)
Anke Schmeink (RWTH Aachen University, Germany)
Robert Schober (University of British Columbia, Canada)
Aydin Sezgin (RUB, Germany)
Hangguan Shan (Zhejiang University, China)
Mohammad Shaqfeh (Texas A&M University at Qatar, Qatar)
Vinod Sharma (Indian Institute of Science, India)
Wenqian Shen (Beijing Institute of Technology, China)
Yuan Shen (Tsinghua University, China)
Hyundong Shin (Kyungh Hee University, Korea)
Oh-Soon Shin (Soongsil University, Korea)
Wonjae Shin (Pusan National University, Korea)
Kenneth Shum (Institute of Network Coding, Hong Kong)
Adão Silva (Instituto de Telecomunicações IT/University of Aveiro, Portugal)
Hong Cheung So (City University of Hong Kong, Hong Kong)
Paschalis Sofotasios (Khalifa University, Finland)
Insoo Sohn (Dongguk University, Korea)
Youngwook Son (Seoul National University, Korea)
Changtick Song (Korea National University of Transportation, Korea)
Houbing Song (Embry-Riddle Aeronautical University, USA)
Andreas Springer (Johannes Kepler University Linz, Austria)
Heidi Steendam (Ghent University, Belgium)
Li Sun (Xi’an Jiaotong University, China)
Weiping Sun (Nanyang Technological University, Singapore)
Youngchul Sung (KAIST, Korea)
Himal Suraweera (University of Peradeniya, Sri Lanka)
Tommy Svensson (Chalmers University of Technology, Sweden)
Hina Tabassum (York University, Canada)
Stefano Tomasini (University of Padova, Italy)
Kamel Tourki (Huawei Technologies Co. Ltd, France)
Theodoros Tsiftsis (Jinan University, China)
Charalampos Tzimis (Newcastle University, United Kingdom Great Britain)
Christos Tsinos (University of Luxembourg, Luxembourg)
George Tsoulos (University of Peloponnese, Greece)
Momin Uppal (Lahore University of Management Sciences, Pakistan)
Mohbata Vaezi (Villanova University, USA)
Mikko Valkama (Tampere University of Technology, Finland)
Luc Vandendorp (Université catholique de Louvain, Belgium)
Cesar Vargas-Rosales (Tecnologico de Monterrey, Mexico)
Giorgio M. Vietta (University of Modena and Reggio Emilia, Italy)
Pascal Vontobel (The Chinese University of Hong Kong, Hong Kong)
Demosthenes Voyioukcas (University of the Aegean, Greece)
Thang Vu (University of Luxembourg, Luxembourg)
Chin-Liang Wang (National Tsing Hua University, Taiwan)

Dongming Wang (Southeast University, China)
Chin-Der Wann (National Kaohsiung University of Science and Technology, Taiwan)
Thakshila Wimalajeewa (BAE Systems, USA)
Hsiao-Chun Wu (Louisiana State University, USA)
Yik-Chung Wu (The University of Hong Kong, Hong Kong)
Dirk Wübben (University of Bremen, Germany)
Xiang-Gen Xia (University of Delaware, USA)
Ming Xiao (Royal Institute of Technology, Sweden)
Chengwen Xing (Beijing Institute of Technology, China)
Chenyang Yang (Beihang University, China)
Heecheol Yang (Kumoh National Institute of Technology, Korea)
H. Birkan Yilmaz (Universitat Politecnica de Catalunya UPC, Spain)
Makoto Yoshida (Fujitsu Laboratories Ltd., Japan)
Donghyun Yu (DGIST, Korea)
Alberto Zanella (Istituto di Elettronica e di Ingegneria dell’Inform.
e delle Telecomunicazioni, Italy)
Honghai Zhang (Google, USA)
Hongliang Zhang (University of Houston, USA)
Li Zhang (University of Leeds, United Kingdom Great Britain)
Ruoyu Zhang (Harbin Institute of Technology, China)
Shunqing Zhang (Shanghai University, China)
Wenyi Zhang (University of Science and Technology of China, China)
Yimin Zhang (Temple University, USA)
Miao Zhao (The Hong Kong Polytechnic University, Hong Kong)
Fu-Chun Zheng (Harbin Institute of Technology, Shenzhen, China)
Liang Zhou (Nanjing University of Posts and Telecommunications, China)
Xu Zhu (University of Liverpool, United Kingdom Great Britain)
Nikola Zogovic (University of Belgrade, Serbia)
Adamu Zungeru (Botswana International University of Science and Technology, Botswana)

Track 2: MAC and Cross Layer Design
Koichi Adachi (The University of Electro-Communications, Japan)
Iwan Adicandira (University of Sydney, Australia)
Hamed Ahmadi (University of York, United Kingdom Great Britain)
Saba Al-Rubaye (Cranfield University, United Kingdom Great Britain)
Fatih Alagoz (Bogazici University, Turkey)
Tara Ali Yahiya (University of Kurdistan Hewler, Iraq)
Onur Altintas (Toyota Motor North America R&D, InfoTech Labs, USA)
Farid Ashtiani (Sharif University of Technology, Iran)
Giuseppe Avellone (STMicroelectronics, Italy)
Sibi Raj B Pillai (IIT Bombay, India)
Abdellah Bachi (Biskra University, Algeria)
Seung Baek (Korea University, Korea)
Uthman Baroudi (King Fahd University of Petroleum and Minerals, Saudi Arabia)
Mats Bengtsson (KTH Royal Institute of Technology, Sweden)
André-Luc Beylot (University of Paris 13, France)
Khaled Bousetta (University of Paris 13, France)
Manoj Bhat (Indian Institute of Space Science and Technology, India)
Lin Cai (Illinois Institute of Technology, USA)
Hsi-Lu Chao (National Chiao Tung University, Taiwan)

IEEE WCNC 2020
COMMITTEES

Ling-Jyh Chen (Academia Sinica, Taiwan)
Xu Chen (Sun Yat-sen University, China)
Yejian Chen (Bell Laboratories, Nokia, Germany)
Yi Chen (The Chinese University of Hong Kong, Shenzhen, China)
Yung-Fang Chen (National Central University, Taiwan)
Chien-Fu Cheng (Tamkang University, Taiwan)
Jihwan Choi (Daegu Gyeongbuk Institute of Science and Technology, Korea)
Jin-Ghoo Choi (Yeungnam University, Korea)
Peter Han Joo Chong (Auckland University of Technology, New Zealand)
Cheng-Fu Chou (NTU, Taiwan)
Massimiliano Comisso (University of Trieste, Italy)
Felipe Cruz-Pérez (Cinvestav-IPN, Mexico)
Swades De (Indian Institute of Technology Delhi, India)
Renato de Moraes (Federal University of Pernambuco UFPE, Brazil)
Langhui Ding (Shanghai Jiao Tong University, China)
Qiang Duan (The Pennsylvania State University, USA)
Khaled Elsayed (Cairo University, Egypt)
Pingyi Fan (Tsinghua University, China)
Gianluigi Ferrari (University of Parma, Italy)
Vasilis Friderikos (King's College London, United Kingdom Great Britain)
Deyun Gao (Beijing Jiaotong University, China)
Rosario Garroppi (University of Pisa, Italy)
Rung-Hung Gau (National Chiao Tung University, Taiwan)
Matthieu Gautier (University Rennes, CNRS, IRISA, France)
Alireza Ghasempour (ICT Faculty, USA)
Tolga Girici (TOBB University of Economics and Technology, Turkey)
M. Cenk Gursoy (Syracuse University, USA)
Congzheng Han (Chinese Academy of Sciences, China)
Zhu Han (University of Houston, USA)
Mohamed Hassan (American University of Sharjah, United Arab Emirates)
Peizhao Hu (Rochester Institute of Technology, USA)
Jun Huang (Chongqing University of Posts and Telecomm, China)
Susumu Ishihara (Shizuoka University, Japan)
Han-You Jeong (Pusan National University, Korea)
Xiaohong Jiang (Future University-Hakodate, Japan)
Ohyun Jo (Chungbuk National University, Korea)
Eduard Jorswieck (Technische Universität Braunschweig, Germany)
Joseph Kang (Nokia Bell Labs, USA)
Ezhan Karasan (Bilkent University, Turkey)
Gaurav Kasbekar (Indian Institute of Technology, Bombay, India)
Jamil Khan (The University of Newcastle, Australia)
Michel Kieffer (L2S - CNRS - SUPELEC - University Paris-Sud, France)
Hongseok Kim (Sogang University, Korea)
Hwangnam Kim (Korea University, Korea)
Hyoil Kim (Ulsan National Institute of Science and Technology, Korea)
Chulhong Min (Nokia Bell Labs, United Kingdom Great Britain)
Chulmin Mo (Niigata University, Japan)
Hamed Mohsenian-Rad (University of California, Riverside, USA)
Hassine Moungla (University of Paris Descartes, France)
Mohamed M. A. Moustafa (Egyptian Russian University, Egypt)
Muhammad Naeem (COMSATS University Islamabad, Wah Campus, Pakistan)
Keivan Navaie (Lancaster University, United Kingdom Great Britain)
Derrick Wing Kwan Ng (University of New South Wales, Australia)
Petros Nicopolitis (Aristotle University, Greece)
Juan Ivan Nieto Hipolito (UABC, Mexico)
Youngtae Noh (Inha University, Korea)
Loufli Nuamly (IMT Atlantique, France)
Hiraku Okada (Nagoya University, Japan)
Frank Oidewurtel (RheinMain University of Applied Sciences, Germany)
Ertan Onur (Middle East Technical University, Turkey)
Miao Pan (University of Houston, USA)
Kevin Qixiang Pang (Lakehead University, Canada)
Symeon Papavassiliou (ICCS/National Technical University of Athens, Greece)
Kostas Pappas (Linköping University, Sweden)
Parth Pathak (George Mason University, USA)
Tommaso Pecorella (Università degli Studi di Firenze, Italy)
Raphael Phan (Monash University, Malaysia)
Pekka Pirinen (University of Oulu, Finland)
Ensio Pesonen (University of Oulu, Finland)
Gianluca Pescatore (Politecnico di Torino, Italy)
Hirofumi Rojas-Cessa (New Jersey Institute of Technology, USA)
Nurul Sarkar (Auckland University of Technology, New Zealand)
Mamoru Sawahashi (Tokyo City University, Japan)
Boon-Chong Seet (Auckland University of Technology, New Zealand)
Vahid Shah-Mansouri (University of Tehran, Iran)
Yuan Shen (Tsinghua University, China)
Chin-Shih Shieh (National Kaohsiung University of Science and Technology, Taiwan)
Kuei-Ping Shih (Tamkang University, Taiwan)
Shigeru Shimamoto (Waseda University, Japan)
Sumit Singh (Moseley Wireless Solutions Group, USA)
Youngwook Son (Seoul National University, Korea)
Houbing Song (Emory-Riddle Aeronautical University, USA)
Hui-Kai Su (National Formosa University, Taiwan)
Masashi Sugano (Osaka Prefecture University, Japan)
Weiping Sun (Nanyang Technological University, Singapore)
Yin Sun (Auburn University, USA)
Yutaka Takahashi (Kyoto University, Japan)
Liansheng Tan (Central China Normal University, China)

Joohyun Lee (Hanyang University, Korea)
Chenglin Li (Shanghai Jiao Tong University, China)
Ruidong Li (National Institute of Information and Communications Technology NICT, Japan)
Xi Li (Beijing University of Posts and Telecommunications, China)
Jia Liu (Iowa State University, USA)
Youjian Liu (University of Colorado at Boulder, USA)
Jaime Lloret (Universitat Politècnica de València, Spain)
Tat Lok (The Chinese University of Hong Kong, Hong Kong)
Miguel López-Benítez (University of Liverpool, United Kingdom Great Britain)
Kejie Lu (University of Puerto Rico at Mayaguez, Puerto Rico)
Lu Lu (The Chinese University of Hong Kong, Hong Kong)
King-Shan Lui (The University of Hong Kong, Hong Kong)
Petri Mäkynen (RWTH Aachen University, Germany)
Fabio Martignoni (University of Bergamo, Italy)
Chulhong Min (Nokia Bell Labs, United Kingdom Great Britain)
Hamed Mohsenian-Rad (University of California, Riverside, USA)
Hassine Moungla (University of Paris Descartes, France)
Mohamed M. A. Moustafa (Egyptian Russian University, Egypt)
Muhammad Naeem (COMSATS University Islamabad, Wah Campus, Pakistan)
Keivan Navaie (Lancaster University, United Kingdom Great Britain)
Derrick Wing Kwan Ng (University of New South Wales, Australia)
Petros Nicopolitis (Aristotle University, Greece)
Juan Ivan Nieto Hipolito (UABC, Mexico)
Youngtae Noh (Inha University, Korea)
Loufli Nuamly (IMT Atlantique, France)
Hiraku Okada (Nagoya University, Japan)
Frank Oidewurtel (RheinMain University of Applied Sciences, Germany)
Ertan Onur (Middle East Technical University, Turkey)
Miao Pan (University of Houston, USA)
Kevin Qixiang Pang (Lakehead University, Canada)
Symeon Papavassiliou (ICCS/National Technical University of Athens, Greece)
Kostas Pappas (Linköping University, Sweden)
Parth Pathak (George Mason University, USA)
Tommaso Pecorella (Università degli Studi di Firenze, Italy)
Raphael Phan (Monash University, Malaysia)
Pekka Pirinen (University of Oulu, Finland)
Ensio Pesonen (University of Oulu, Finland)
Gianluca Pescatore (Politecnico di Torino, Italy)
Hirofumi Rojas-Cessa (New Jersey Institute of Technology, USA)
Nurul Sarkar (Auckland University of Technology, New Zealand)
Mamoru Sawahashi (Tokyo City University, Japan)
Boon-Chong Seet (Auckland University of Technology, New Zealand)
Vahid Shah-Mansouri (University of Tehran, Iran)
Yuan Shen (Tsinghua University, China)
Chin-Shih Shieh (National Kaohsiung University of Science and Technology, Taiwan)
Kuei-Ping Shih (Tamkang University, Taiwan)
Shigeru Shimamoto (Waseda University, Japan)
Sumit Singh (Moseley Wireless Solutions Group, USA)
Youngwook Son (Seoul National University, Korea)
Houbing Song (Emory-Riddle Aeronautical University, USA)
Hui-Kai Su (National Formosa University, Taiwan)
Masashi Sugano (Osaka Prefecture University, Japan)
Weiping Sun (Nanyang Technological University, Singapore)
Yin Sun (Auburn University, USA)
Yutaka Takahashi (Kyoto University, Japan)
Liansheng Tan (Central China Normal University, China)
COMMITTEES

<table>
<thead>
<tr>
<th>Track 3: Wireless Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohammad Abdel-Rahman (Virginia Tech, USA)</td>
</tr>
<tr>
<td>Iwan Adhicandra (University of Sydney, Australia)</td>
</tr>
<tr>
<td>Wessam Affifi (Mavenir Systems, USA)</td>
</tr>
<tr>
<td>Ramon Aguero (University of Cantabria, Spain)</td>
</tr>
<tr>
<td>Wessam Ajib (Université du Québec à Montréal, Canada)</td>
</tr>
<tr>
<td>Anwer Al-Dulaimi (EXFO Inc., Canada)</td>
</tr>
<tr>
<td>Michele Albano (Aalborg University, Denmark)</td>
</tr>
<tr>
<td>Onur Altintas (Toyota Motor North America R&D, InfoTech Labs, USA)</td>
</tr>
<tr>
<td>Gayan Amarasinghe (Southern Illinois University, USA)</td>
</tr>
<tr>
<td>Santhanakrishnan Anand (New York Institute of Technology, USA)</td>
</tr>
<tr>
<td>Prasanth Ananth (Nokia Bell Labs, USA)</td>
</tr>
<tr>
<td>Farid Ashstiani (Sharif University of Technology, Iran)</td>
</tr>
<tr>
<td>Chadi Assi (Concordia University, Canada)</td>
</tr>
<tr>
<td>Stefano Avalone (University of Naples, Italy)</td>
</tr>
<tr>
<td>Seung Baek (Korea University, Korea)</td>
</tr>
<tr>
<td>Masaki Bandai (Sophia University, Japan)</td>
</tr>
<tr>
<td>Haythem Bany Salameh (Yarmouk University, Jordan)</td>
</tr>
<tr>
<td>Uthman Baroudi (King Fahd University of Petroleum and Minerals, Saudi Arabia)</td>
</tr>
<tr>
<td>Gautam Bhanage (Cisco Systems, USA)</td>
</tr>
<tr>
<td>Azzedine Boukerche (University of Ottawa, Canada)</td>
</tr>
<tr>
<td>Khaled Boussetta (University of Paris 13, France)</td>
</tr>
<tr>
<td>Manoj Bhat (Indian Institute of Space Science and Technology, India)</td>
</tr>
<tr>
<td>Carlos Alberto Campos (Federal University of the State of Rio de Janeiro, Brazil)</td>
</tr>
<tr>
<td>Qing Cao (University of Tennessee, USA)</td>
</tr>
<tr>
<td>Filipe Cardoso (IST/INOV INESC/ESTSetubal, Portugal)</td>
</tr>
<tr>
<td>Marcelo Carvalho (University of Brasilia, Brazil)</td>
</tr>
<tr>
<td>Hsi-Lu Chao (National Chiao Tung University, Taiwan)</td>
</tr>
<tr>
<td>Ioannis Chatziigianakis (Sapienza University of Rome, Italy)</td>
</tr>
<tr>
<td>Periklis Chatzimisios (International Hellenic University, Greece)</td>
</tr>
<tr>
<td>Kang Chen (Southern Illinois University Carbondale, USA)</td>
</tr>
<tr>
<td>Yuh-Shyan Chen (National Taiwan University, Taiwan)</td>
</tr>
<tr>
<td>Chien-Fu Cheng (Tamkang University, Taiwan)</td>
</tr>
<tr>
<td>Stefano Chessa (Università’ di Pisa, Italy)</td>
</tr>
<tr>
<td>Mauro Conti (University of Padua, Italy)</td>
</tr>
<tr>
<td>Pedro d’Orey (Instituto de Telecomunicações, Portugal)</td>
</tr>
<tr>
<td>Antonio de la Oliva (Universidad Carlos III de Madrid, Spain)</td>
</tr>
<tr>
<td>Renato de Moraes (Federal University of Pernambuco UFPE, Brazil)</td>
</tr>
<tr>
<td>Carl Debono (University of Malta, Malta)</td>
</tr>
<tr>
<td>Ilker Demirkol (Universitat Politècnica de Catalunya, Spain)</td>
</tr>
<tr>
<td>Soufiane Djahel (Manchester Metropolitan University, United Kingdom Great Britain)</td>
</tr>
<tr>
<td>Mahmoud Dughan (Lebanese University, Faculty of Engineering, Branch 3, Lebanon)</td>
</tr>
<tr>
<td>Falko Dressler (Paderborn University, Germany)</td>
</tr>
<tr>
<td>Qinghe Du (Xi’an Jiaotong University, China)</td>
</tr>
<tr>
<td>Zbigniew Dziong (Ecole de technologie supérieure, University of Quebec, Canada)</td>
</tr>
<tr>
<td>Khalil El-Khatib (University of Ontario Institute of Technology, Canada)</td>
</tr>
<tr>
<td>Jocelyne Elias (Paris Descartes University, France)</td>
</tr>
<tr>
<td>Khaled Elsayed (Cairo University, Egypt)</td>
</tr>
<tr>
<td>Ozgur ERCIN (Sabanci University, Turkey)</td>
</tr>
<tr>
<td>Lorenzo Favalli (University of Pavia, Italy)</td>
</tr>
<tr>
<td>Mauro Femminella (University of Perugia, Italy)</td>
</tr>
<tr>
<td>Stenio Fernandes (Element AI, Canada)</td>
</tr>
<tr>
<td>Hui-Wen Feng (National Taiwan University of Science and Technology, Taiwan)</td>
</tr>
<tr>
<td>Andres Garcia-Saavedra (NEC Labs Europe, Germany)</td>
</tr>
<tr>
<td>Rosario Garroppo (University of Pisa, Italy)</td>
</tr>
<tr>
<td>Yacine Ghamri-Doudane (University of la Rochelle, France)</td>
</tr>
<tr>
<td>COMMITTEES</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Charalampos Konstantopoulos (University of Piraeus, Greece)</td>
</tr>
<tr>
<td>Georgios Kormentzas (University of the Aegean, Greece)</td>
</tr>
<tr>
<td>Tian Lan (George Washington University, USA)</td>
</tr>
<tr>
<td>Gilsoo Lee (Virginia Tech, USA)</td>
</tr>
<tr>
<td>Howon Lee (Hankyong National University, Korea)</td>
</tr>
<tr>
<td>HyungJune Lee (Ewha Womans University, Korea)</td>
</tr>
<tr>
<td>Jack Y. B. Lee (The Chinese University of Hong Kong, Hong Kong)</td>
</tr>
<tr>
<td>Kyungmin Lee (Facebook, USA)</td>
</tr>
<tr>
<td>Zander Zhongding Lei</td>
</tr>
<tr>
<td>(Huawei Singapore Research Center, Singapore)</td>
</tr>
<tr>
<td>Ka-Cheong Leung</td>
</tr>
<tr>
<td>(Harbin Institute of Technology, Shenzhen, China)</td>
</tr>
<tr>
<td>Chenglin Li (Shanghai Jiao Tong University, China)</td>
</tr>
<tr>
<td>Wenjia Li (New York Institute of Technology, USA)</td>
</tr>
<tr>
<td>Phone Lin (National Taiwan University, Taiwan)</td>
</tr>
<tr>
<td>Yih-Chuan Lin (National Formosa University, Taiwan)</td>
</tr>
<tr>
<td>Bing-Hong Liu</td>
</tr>
<tr>
<td>(National Kaohsiung University of Science and Technology, Taiwan)</td>
</tr>
<tr>
<td>Angeles Liversi (Wavelab Inc, USA)</td>
</tr>
<tr>
<td>Jaime Lloret (Universitat Politècnica de Catalunya UPC, Spain)</td>
</tr>
<tr>
<td>Miguel López-Benítez</td>
</tr>
<tr>
<td>(University of Liverpool, United Kingdom Great Britain)</td>
</tr>
<tr>
<td>Kejie Lu (University of Puerto Rico at Mayaguez, Puerto Rico)</td>
</tr>
<tr>
<td>Lu Lu (The Chinese University of Hong Kong, Hong Kong)</td>
</tr>
<tr>
<td>King-Shan Lui (The University of Hong Kong, Hong Kong)</td>
</tr>
<tr>
<td>Tony Luo (Missouri University of Science and Technology, USA)</td>
</tr>
<tr>
<td>Maurizio Magarini (Politecnico di Milano, Italy)</td>
</tr>
<tr>
<td>Dario Maggiolini (University of Milano, Italy)</td>
</tr>
<tr>
<td>Rajarshi Mahapatra (IIT Naya Raipur, India)</td>
</tr>
<tr>
<td>Guoqiang Mao (The University of Technology, Sydney, Australia)</td>
</tr>
<tr>
<td>Barbara Masini (CRN - IEIIT, Italy)</td>
</tr>
<tr>
<td>Xavier Masip-Bruin</td>
</tr>
<tr>
<td>(Universitat Politècnica de Catalunya UPC, Spain)</td>
</tr>
<tr>
<td>Ahmed Mehaoua (University of Paris Descartes, France)</td>
</tr>
<tr>
<td>Tommaso Melodia (Northeastern University, USA)</td>
</tr>
<tr>
<td>Maria Luisa Merani (University of Modena and Reggio Emilia, Italy)</td>
</tr>
<tr>
<td>Chulhong Min (Nokia Bell Labs, United Kingdom Great Britain)</td>
</tr>
<tr>
<td>Jelena Mišić (Ryerson University, Canada)</td>
</tr>
<tr>
<td>Sándor Molnár</td>
</tr>
<tr>
<td>(Budapest University of Technology and Economics, Hungary)</td>
</tr>
<tr>
<td>Hassine Moungia (University of Paris Descartes, France)</td>
</tr>
<tr>
<td>Amitava Mukherjee (Globsyn Business School, Kolkata, India)</td>
</tr>
<tr>
<td>Telex M. N. Ngatched</td>
</tr>
<tr>
<td>(Memorial University of Newfoundland, Canada)</td>
</tr>
<tr>
<td>Seung Yeob Nam (Yeungnam University, Korea)</td>
</tr>
<tr>
<td>Jad Nasreddine (Rafik Hariri University, Lebanon)</td>
</tr>
<tr>
<td>Keivan Navaie (Lancaster University, United Kingdom Great Britain)</td>
</tr>
<tr>
<td>Amiya Nayak (SITE, University of Ottawa, Canada)</td>
</tr>
<tr>
<td>Diep Nguyen (University of Technology Sydney, Australia)</td>
</tr>
<tr>
<td>Thi Mai Trang Nguyen (Sorbonne Université, France)</td>
</tr>
<tr>
<td>Petroc Nicopolitidis (Aristotle University, Greece)</td>
</tr>
<tr>
<td>Youngtae Noh (Inha University, Korea)</td>
</tr>
<tr>
<td>Ertan Onur (Middle East Technical University, Turkey)</td>
</tr>
<tr>
<td>Hadi Otrok (Khalifa University, United Arab Emirates)</td>
</tr>
<tr>
<td>Diego Pacheco-Paramo (Universidad Sergio Arboleda, Colombia)</td>
</tr>
<tr>
<td>Kevin Qixiang Pang (Lakehead University, Canada)</td>
</tr>
<tr>
<td>Symeon Papavassiliou</td>
</tr>
<tr>
<td>(ICCS/National Technical University of Athens, Greece)</td>
</tr>
<tr>
<td>Nikolaos Pappas (Linköping University, Sweden)</td>
</tr>
<tr>
<td>Stefano Paris (Nokia Bell Labs, France)</td>
</tr>
<tr>
<td>Parth Pathak (George Mason University, USA)</td>
</tr>
<tr>
<td>Paul Patras</td>
</tr>
</tbody>
</table>

IEEE WCNC 2020
COMMITTEES

Chi Zhang (University of Science and Technology of China, China)
Liqiang Zhang (Indiana University South Bend, USA)
Shunqing Zhang (Shanghai University, China)
Kan Zheng (Beijing University of Posts and Telecommunications, China)
Bo Zhou (Virginia Tech, USA)
Mu Zhou (Chongqing University of Posts and Telecommunications, China)
Yi-hua Zhu (Zhejiang University of Technology, China)
Nikola Zogović (University of Belgrade, Serbia)
Anatoliy Zubow (Technische Universitat Berlin, Germany)

Karin Anna Hummel (JKU Linz, Austria)
Peizhao Hu (Rochester Institute of Technology, USA)
Andrea Hess (Trinity College Dublin, Ireland)
Yejun He (Shenzhen University, China)
Mohamed Hassan
Congzheng Han (Chinese Academy of Sciences, China)
Zhangyu Guan (University at Buffalo, USA)
Yu Gu (Hefei University of Technology, China)
Ratan K. Ghosh (Indian Institute of Technology, Kanpur, India)
Markus Fidler (Reinbeck University, Germany)
Zbigniew Dziong
Wei Ding (Florida Polytechnic University, USA)
Lianghui Ding (Shanghai Jiao Tong University, China)
Pallab Datta (IBM Almaden Research Center, USA)
Pedro M. d'Orey (Instituto de Telecomunicações, Portugal)
Tai-Lin Chin
Yuh-Shyan Chen (National Taipei University, Taiwan)
Chien-Liang Chen (Aletheia University, Taiwan)
Chao Chen (Purdue University Fort Wayne, USA)
Hui Chen (CUNY Brooklyn College, USA)
Min-Xiou Chen (National Dong Hwa University, Taiwan)
Yuh-Shyan Chen (National Taipei University, Taiwan)
Tai-Lin Chin (National Taiwan University of Science and Technology, Taiwan)
Pedro M. d'Orey (Instituto de Telecomunicações, Portugal)
Pallab Datta (IBM Almaden Research Center, USA)
Lianghui Ding (Shanghai Jiao Tong University, China)
Wei Ding (Florida Polytechnic University, USA)
Zbigniew Dziong
(École de technologie supérieure, University of Quebec, Canada)
Khalid Elgazzar (Ontario Tech University, Canada)
Amr Elmougy (German University in Cairo, Egypt)
Markus Fidler (Leibniz Universität Hannover, Germany)
Luca Foschini (University of Bologna, Italy)
Navid Ghazisaidi (San Jose State University, USA)
Ratan K. Ghosh (Indian Institute of Technology, Kanpur, India)
Yu Gu (Hefei University of Technology, China)
Zhangyu Guan (University at Buffalo, USA)
Jairo A Gutierrez (Auckland University of Technology, New Zealand)
Congzheng Han (Chinese Academy of Sciences, China)
Mohamed Hassan
(American University of Sharjah, United Arab Emirates)
Yejun He (Shenzhen University, China)
Geert Heijenk (University of Twente, The Netherlands)
Andrea Hess (Trinity College Dublin, Ireland)
Peizhao Hu (Rochester Institute of Technology, USA)
Karín Anna Hummel (JKU Linz, Austria)

Junbeom Hur (Korea University, Korea)
Yurong Jiang (HP Labs, USA)
Vana Kalogeraki (Athens University of Economics and Business, Greece)
Holger Karl (Paderborn University, Germany)
Sokratis K. Katsikas (Norwegian University of Science and Technology, Norway)
Hyoil Kim (Ulsan National Institute of Science and Technology UNIST, Korea)
JeongGil Ko (Yonsei University, Korea)
Abdellatif Kobbane (ENSIAS, Mohammed V University of Rabat, Morocco)
Marios Kouontouris (EURECOM, France)
Howon Lee (Hankyong National University, Korea)
Uichin Lee (KAIST, Korea)
Youngki Lee (Seoul National University, Singapore)
Alessandro Leonardi (AGT International, Germany)
Chenglin Li (Shanghai Jiao Tong University, China)
Yunzhou Li (Tsinghua University, China)
Yeong-sun Lim (IBM T. J. Watson Research Center, USA)
Chu-Hsing Lin (Tungku University, Taiwan)
Chun-Cheng Lin (National Chiao Tung University, Taiwan)
Juan Liu (Ningbo University, China)
Kejie Lu (University of Puerto Rico at Mayaguez, Puerto Rico)
King-Shan Lui (The University of Hong Kong, Hong Kong)
Tony T. Luo (Missouri University of Science and Technology, USA)
Abdelhamid Mammeri (National Research Council Canada, Canada)
Pietro Manzoni (Universitat Politècnica de Catalunya, Spain)
Angelos K. Marnerides (Lancaster University, United Kingdom Great Britain)
Xavier Masip-Bruin (Universitat Politècnica de Catalunya UPC, Spain)
Hassine Moungla (University of Paris Descartes, France)
Telex M. N. Ngatched (Memorial University of Newfoundland, Canada)
Tamer Nadeem (Virginia Commonwealth University, USA)
Juan Ivan Nieto Hipolito (UABC, Mexico)
Youngtae Noh (Inha University, Korea)
Ertan Onur (Middle East Technical University, Turkey)
Elena Pagani (Università degli Studi di Milano, Italy)
Sooksan Panichpapiboon (King Mongkut’s Institute of Technology Ladkrabang, Thailand)
Symeon Papavassiliou (ICCS/National Technical University of Athens, Greece)
Mugen Peng (Beijing University of posts & Telecommunications, China)
Shuping Peng (Huawei Technologies, China)
Vaskar Raychoudhury (Miami University, USA)
Joel J. P. C. Rodrigues (Federal University of Piauí UFPI, Brazil)
Javier Rubio-Loyola (CINVESTAV Tamaulipas, Mexico)
Cristina Serban (AT&T Security Research Center, USA)
Cong Shen (University of Virginia, USA)
Chin-Shih Shiek (National Kaohsiung University of Science and Technology, Taiwan)
Hyoung Jong Yang (UNIST, Korea)
Kuei-Ping Shih (Tamkang University, Taiwan)
Seungwon Shin (KAIST, Korea)
Meryem Simsek (International Computer Science Institute, USA)
Sumit Singh (Moseley Wireless Solutions Group, USA)
Houbing Song (Emory-Riddle Aeronautical University, USA)
Chiu C. Tan (Temple University, USA)
Daniela Tarchi (University of Bologna, Italy)
Nguyen H. Tran (The University of Sydney, Australia)
COMMITTEES

Dirk Trossen (InterDigital Europe, United Kingdom Great Britain)
George Tsoulos (University of Peloponnese, Greece)
Wanqing Tu (The University of Auckland, New Zealand)
Masahiro Umehira (Ibaraki University, Japan)
Athanasios V. V. Vasilakos
(Luleå University of Technology, Sweden)
Luiz F. M. Vieira (Universidade Federal de Minas Gerais, Brazil)
Alexey Vinel (Halmstad University, Sweden)
Haris Volos (DENSEO International America, Inc., USA)
Thang X. Vu (University of Luxembourg, Luxembourg)
Dongming Wang (Southeast University, China)
Honggang Wang (University of Massachusetts, Dartmouth, USA)
Li Wang
(Beijing University of Posts and Telecommunications, China)
Mea Wang (University of Calgary, Canada)
Ning Wang (Rowan University, USA)
Pi-Chung Wang (National Chung Hsing University, Taiwan)
Sherry Wang (Intelligent Automation Inc IAI, USA)
Weichao Wang (University of North Carolina at Charlotte, USA)
Xiumin Wang (South China University of Technology, China)

Hung-Yu Wei (National Taiwan University, Taiwan)
Lili Wei (Intel Corporation, USA)
Christian Wietfeld (TU Dortmund University, Germany)
Fan Wu (Shanghai Jiao Tong University, China)
Xuanli Wu (Communication Research Center, Harbin Institute of Technology, China)
Yulei Wu (University of Exeter, United Kingdom Great Britain)
Min Xie (Telenor Research, Norway)
Guanhua Yan (Binghamton University, USA)
Tomoki Yoshiiha (Osaka University, Japan)
Keping Yu (Waseda University, Japan)
Wei Yu (Towson University, USA)
Wei Yuan (Huazhong University of Science and Technology, China)
Sherali Zeadally (University of Kentucky, USA)
Weiliang Zeng (Qualcomm Research, USA)
Yan Zhang (University of Oslo, Norway)
Mu Zhou
(Chongqing University of Posts and Telecommunications, China)
Zhangbing Zhou (Institute Telecom, France)
Nikola Zogović (University of Belgrade, Serbia)
TUESDAY, 26 MAY 2020 • 9:20 am – 10:40 am

YOUNG LEE
Head of Network Architecture, Samsung

Next Steps And Challenges of 5G Network Evolution

On April 2019, the world-first 5G network was launched commercially in South Korea. The early stage of 5G roll-out was targeted only to enhanced Mobile BroadBand (eMBB) service, and its control depended on LTE as an anchor. The real 5G will come with more enhanced features to support higher capacity, Integrated Access & Backhaul (IAB), Ultra-Reliable and Low Latency Communications (URLLC), Industrial IoT, Vehicle-to-everything (V2X), and AR/VR. 5G Stand-alone (SA) deployment is a first step to show full potential of 5G as 5G SA brings the foundation for end-to-end (E2E) service pipeline across different domains –Radio Access Network (RAN), Core Network (CN), Transport Network (TN), and Data Network (DN) – to accelerate innovations of Mobile Network Operators (MNO). While innovations are important, network monetization and Operating Expenditure (OPEX) / Capital Expenditure (CAPEX) reduction are key concerns of Mobile Network Operators (MNOs) to justify huge investment costs. In this regard, the benefits from virtualization, network slicing and automation are driving forces for 5G network evolution. This talk explores the technological challenges from trending areas such as virtualized RAN, E2E network slicing, and network automation. In addition, this talk presents a view on the central role of virtualization and cloudification towards technological innovation and cost reduction.

Biography: Young Lee has been in telecommunication industry over 30 years. His specialty includes network architecture, SDN/NFV, network orchestration, 5G transport and core network design, network control and management. He is currently Head of Network Architecture at Samsung Electronics Networks Business where he is leading network architecture evolution and strategy to transform various elements such as RAN, Core, Transport with AI/NFV/SDN and Orchestration into integrated solutions. At Huawei US Research center in Texas USA (2006-2019) he was Technical Senior Director and Distinguished Engineer and led several key technology concept developments, standardization and evangelization in the areas of optical control plane, path computation, transport SDN, network cloud platform and orchestration. At Ceterus Network (2001-2006), he was Co-Founder and Chief Network Architect and led a large-scale packet switching system development. At AT&T Labs (1995-2000), He was Principal Member of Technical Staff where he led various systems engineering projects including AT&T next generation router evolution, AT&T common IP/MPLS backbone routing and management, etc. At AT&T Bell Labs (1987-1995), he was Member of Technical Staff and led several routing and switching system engineering projects and network traffic management system development. He received B.A. in Applied Mathematics from U.C. Berkeley (1986), M.S. in Operations Research from Stanford University (1987), and Ph.D. in Decision Science and Engineering Systems from Rensselaer Polytechnic Institute (1996) via AT&T Bell Labs’ doctoral support program.

KANG-WON LEE
Vice President and Head of Cloud Labs of SK Telecom

Challenges and Opportunities of 5G Mobile Edge Cloud

The 5G services require a network with “high bandwidth and ultra-low latency.” High bandwidth can be enabled by wider frequency bands. To achieve ultra-low latency, however, network operators have come up with the concept of “mobile edge.” By leveraging mobile edge, we can deliver novel 5G applications that can benefit from sub 10ms latency, such as cloud XR, cloud gaming, connected cars, cloud robots. While providing ultra-low latency itself is useful, this does not fully justify the cost of deployment of numerous edge sites. In fact, it is not difficult to see mobile edge provides a couple of additional benefits: (1) huge volumes of data (that may be generated by, for example, connected cars) can be processed at the edge instead of sending them to a remote data center, which is extremely costly; (2) mission-critical and sensitive data from a smart factory or hospital can be processed at the edge without leaving the site. By enabling edge data processing and local security, mobile edge provides a unique opportunity for mobile service providers to bring new values to its B2C and B2B customers. In this keynote, I propose that mobile edge should be “programmable” and “cloud native.” This does not mean just running a few VMs at the edge site. At SKT we are developing its mobile edge as a fully functioning cloud. SKT’s MEC or “mobile edge cloud” will provide virtualized infrastructure with Kubernetes, serverless, and service mesh support. We are also pairing our MEC with public clouds so that our users have options to quickly build new applications using widely understood cloud APIs and services. In addition, we will provide our unique service assets, such as telco APIs, natural language processing, real-time data processing, etc. “as a service” to developers so they can quickly build something that was truly not possible before. I will conclude this talk by presenting several early use cases that we are developing on 5G MEC with our partners.

Biography: As Vice President and Head of Cloud Labs of SK Telecom, Dr. Kang-Won Lee has been leading the research and development of cloud technologies to expand the company’s 5G service portfolio and strengthen its leadership. He is currently developing innovative technologies aimed at enhancing customer’s experience and value. They include 5G MEC, telco cloud infrastructure to provide next-generation 5G services, such as cloud gaming, autonomous driving or 5G robots. Before joining SK Telecom, he worked at IBM Watson Research Center in New York for 14 years leading a number of R&D projects as Research Manager, and successfully applied his R&D results to IBM’s main products, such as Informix and Tivoli. He received his bachelor and master’s degrees from Seoul National University and a doctor’s degree in Computer Science from University of Illinois Urbana-Champaign (UIUC).
KEYNOTE SPEAKERS

WEDNESDAY, 27 MAY 2020 • 9:10 am – 10:30 am

GERHARD FETTWEIS
Vodafone Chair Professor, Technische Universität Dresden

6G – A Step Beyond Stretching 5G

The initial vision of cellular communications was to deliver ubiquitous voice communications to anyone anywhere. However, only 2G delivered this promise. It also elevated the appetite for cellular data, for which 3G was designed. Hence, we needed 4G to deliver energy efficient broadband cellular data. With 5G the promise is to start the Tactile Internet, controlling real and virtual objects in real-time via cellular. It seems, that we need to stretch 5G to the next step, 6G. We seem to need 2 generations to bring a new service to fruition, with odd generations initiating and even ones making it happen. The physical air interface also has 2 generations of technology ripening, however even ones initiating it and odd completing it (CDMA: 2G and 3G, OFDM: 4G and 5G). If generations stay the same, we are ready for a revolution in air interface to happen with 6G, to “stretch the goals of 5” such that 6G can deliver the promises made. However, here we will also show new opportunities ahead, going far beyond stretching goals, as e.g. increasing data rate and reducing latency. With some first experimental results, this talk shall deliver a vision as well as some validation of what could become possible. In particular, we will discuss using the physical layer also for sensing, expanding the current focus of cellular one big step forward. Also, the current cellular network comprising 2 basic functions, i.e. service delivery via layer 1-7, and network management, must be expanded by adding a third layer for delivering integrity. Finally, today’s data traffic is dominated by video delivery. Will this stay that way?

Biography: Prof. Gerhard P. Fettweis, F’09, earned a Ph.D. under H. Meyr at RWTH Aachen. After a postdoc at IBM Research, San Jose, he joined TCSI, Berkeley. Since 1994 he is Vodafone Chair Professor at TU Dresden. Since 2018 he heads the Barkhausen Institute. 2019 he was elected into the DFG Senate. He researches wireless transmission and chip design, and coordinates e.g. the 5GLab Germany, has spun-out 17 startups, and is member the German Academy of Sciences “Leopoldina”, and German Academy of Engineering “acatech”.

JIANMIN LU
Executive Director, Huawei Wireless Technology Lab

Into the Future Wireless

The 5G has already been commercially deployed since last year and people, especially Korean customers, enjoy the benefit of 2C business. Although the standard of 3GPP R16 will be released shortly in 2020 and this will be the full formal 5G, i.e. IMT2020 compliant, the research and standard to evolve 5G will not stop. While 5G is opening the door of digital transformation of many aspects of our life, industry, business and even the whole society, the future of wireless is yet to be discovered. Since the first generation of mobile technology, the mobile industry has experienced significant growth driven by ‘subscription dividend’ and ‘traffic dividend’. The next dividend is believed to be the “connection dividend” or even “intelligence dividend”. In addition, sensing (including accurate positioning, imaging etc.) will be a novel capability of future network, enabling “everything sensing”, “everything connected” and “everything intelligent”. On the other hand, the sheer number of connected devices and objects will not only create unprecedented growth of data traffic and massive connections, but also create a substantial increase in energy consumption across all parts of the network. Energy efficiency in wireless networks is now a growing concern for network operators to not only reduce the network operation costs, but also as a social obligation, to reduce greenhouse gas emissions. Moreover, higher frequency (mmWave and THz) band provides abundant spectrum for Tb/s data rate, while it also brings about paradigm shift in the whole system design. The research challenges and technology breakthroughs required to deliver the vision for future wireless will be presented in this talk.

Biography: Jianmin Lu joined the Huawei Technologies in 1999. During the last two decades, he conducted various researches on wireless communications especially on physic layer and MAC layer and developed 3G, 4G and 5G products. He received more than 50 patents during the research. He was deeply involved in 3GPP2 (EVDO/UMB), WiMAX/802.16m and 3GPP (LTE/NR) standardization and contributed several key technologies such as flexible radio frame structure, radio resource management and MIMO. His current research interest is in the area of signal processing, protocol and networking for the next generation wireless communication. He is currently Executive Director of Huawei Wireless Technology Lab.
KEYNOTE SPEAKERS

THURSDAY, 28 MAY 2020 • 9:05 am – 10:20 am

NESS B. SHROFF
Ohio Eminent Scholar in Networking and Communications, Chaired Professor of ECE and SCE, The Ohio State University

A Fresh Look at an Old Problem: Network Utility Maximization – Convergence, Delay, and Complexity

Network Utility Maximization has been studied for resource allocation problems in communication networks for nearly two decades. Nonetheless, a major challenge that continues to remain open is how to develop a distributed congestion control and routing algorithm that can simultaneously provide utility optimality, fast convergence speed, and low delay. To address this challenge we take a fresh perspective on this old problem and develop a new algorithm that offers the fastest known convergence speed, vanishing utility optimality gap with finite queue length, and low routing complexity. Our key contributions in this work are: i) the design of a new joint congestion control and routing algorithm based on a type of inexact Uzawa method in the Alternating Directional Method of Multiplier; ii) a new theoretical path to prove global and linear convergence rate without requiring the full rank assumption of the constraint matrix; and iii) a clear path for implementing the proposed method in a fully distributed fashion.

Biography: Ness Shroff received the Ph.D. degree in electrical engineering from Columbia University in 1994. He joined Purdue University immediately thereafter as an Assistant Professor with the School of Electrical and Computer Engineering. At Purdue, he became a Full Professor of ECE and the director of a university-wide center on wireless systems and applications in 2004. In 2007, he joined The Ohio State University, where he holds the Ohio Eminent Scholar Endowed Chair in networking and communications, in the departments of ECE and CSE. He holds or has held visiting (chaired) professor positions at Tsinghua University, Beijing, China, Shanghai Jiaotong University, Shanghai, China, and IIT Bombay, Mumbai, India. He has received numerous best paper awards for his research and is listed in Thomson Reuters’ on The World’s Most Influential Scientific Minds, and has been noted as a Highly Cited Researcher by Thomson Reuters in 2014 and 2015. He currently serves as the steering committee chair for ACM Mobihoc and Editor at Large of the IEEE/ACM Transactions on Networking. He received the IEEE INFOCOM Achievement Award for seminal contributions to scheduling and resource allocation in wireless networks.

WOO-JIN BYUN
Assistant Vice President, Radio Satellite Research Division, ETRI

Toward One Network Era: Integrated Terrestrial-Satellite Communication

With the development of mobile communication technology, wireless data transmission speed is increasing, but the communication range is narrowing. In particular, millimeter wave 5G is expected to provide Gbps data services mainly in the hot spot area. Despite the development of mobile communication networks, there are still many coverage holes which mobile communication cannot provide data services. Covering all these shaded areas with a mobile communication network would be expensive. Moreover, people want to be provided with high-quality data services on airplanes and cruise ships. To this end, satellite and terrestrial communication networks are being integrated. Satellites have traditionally served to provide telecommunications services to disaster areas where terrestrial networks have collapsed. In addition, it has been providing broadcasting and communication services to marine areas and island-mountainous areas that do not reach the ground network. Terrestrial-Satellite communication network will be able to provide much higher quality services. In this talk, I would like to point out the development direction of terrestrial-satellite communication technology. In addition, the main technologies in the field of terrestrial-satellite communication required for the 5G+ / 6G era will be explained.

Biography: Woo-Jin Byun received Ph.D. degrees in electrical engineering from the Korea Advanced Institute of Science and Technology, (KAIST) Daejeon, Korea, in 2000. In 1999, he joined Samsung Electro-Mechanics Company, Suwon, Korea, where he developed mobile communication devices such as power amplifiers and radio modules from 1999 to 2004. Since 2004, he has been a member of researchers in ETRI. He has received best paper award at ETRI Journal, best researcher from KIEES and certificate of the Minister of Science and ICT (Korea Government). He serves as a member of Editorial Committee at ETRI Journal. He was with the ATHENA group at Georgia Institute of Technology as a visiting scholar from 2015 to 2016. He is currently serving as Assistant Vice President for Radio Satellite Research Division at ETRI.
TECHNICAL PROGRAMS

Tuesday, 26 May 2020
11:00 - 12:30 • Room 01

T1-S1: Millimeter-Wave Systems 1
Chair: Seungyun Kim
(Seoul National University, South Korea)

An Analytical Model for Efficient Indoor THz Access Point Deployment
Rohit Singh and Doug Sicker
(Carnegie Mellon University, USA)

Opportunistc Hybrid Beamforming Based on Adaptive Perturbation for mmWave Multi-User MIMO Systems
Thuan Van Le and Kyungchun Lee (Seoul National University of Science and Technology, South Korea)

Maximum Sub-Array Diversity for mmWave Network Under RF Power Leakage and Distortion Noises
Leila Tlebaldiyeva and Behrouz Maham
(Nazarbayev University, Kazakhstan)
Olav Tirkkonen (Aalto University, Finland)

Enabling Massive Connections Using Hybrid Beamforming in Terahertz Micro-Scale Networks
Hang Yuan (Beijing Institute of Technology, China)
Nan Yang (The Australian National University, Australia)
Kai Yang (Beijing Institute of Technology, China)
Chong Han (Shanghai Jiao Tong University, China)
Jianping An (Beijing Institute of Technology, China)

Particle Swarm Optimization Inspired Low-Complexity Beamforming for mmWave Massive MIMO Systems
Lina Hou (Inner Mongolia University, China)
Yang Liu (Institute of Electronic Information Engineering, Inner Mongolia University, China)
Xuehui Ma and Yuting Li (Inner Mongolia University, China)
Shun Na (Institute of Electronic Information Engineering, Inner Mongolia University, China)
Minglu Jin (Dalian University of Technology, China)

Multi-Agent Deep Reinforcement Learning for Secure UAV Communications
Yu Zhang (Tsinghua University, China)
Zirui Zhuang (Beijing University of Posts and Telecommunications, China)
Feifei Gao (Tsinghua University, China)
Jingyu Wang
(Beijing University of Posts and Telecommunications, China)
Zhu Han (University of Houston, USA)

Autoencorder Based Friendly Jamming
Bui Minh Tuan
(University of Engineering and Technology, Vietnam)
Duc-Tuyen Ta (LRI, Université Paris Saclay, France)
Nguyen Linh Trung
(Vietnam National University, Hanoi, Vietnam)
Nguyen Viet Ha (VNU Ha Noi, Vietnam)

Exploiting a Low-Cost CNN with Skip Connection for Robust Automatic Modulation Classification
Thien Huynh-The
(Kumoh National Institute of Technology, South Korea)
Cam-Hao Hua (Kyung Hee University, South Korea)
Jae Woo Kim, Seung-Hwan Kim and Dong Seong Kim
(Kumoh National Institute of Technology, South Korea)

A Linear Bayesian Learning Receiver Scheme for Massive MIMO Systems
Alva Kosasih, Wibowo Hardjawana and Branka Vucetic
(The University of Sydney, Australia)
Chao-Kai Wen (National Sun Yat-sen University, Taiwan)

Tuesday, 26 May 2020
11:00 - 12:30 • Room 02

T1-S2: Deep Learning for Wireless Communications 1
Chair: Wonjae Shin (Pusan National University, South Korea)

Adversarial Jamming Attacks on Deep Reinforcement Learning Based Dynamic Multichannel Access
Chen Zhong, Feng Wang, M. Cenk Gursoy and Senem Velipasalar (Syracuse University, USA)

Energy Efficiency Optimization for Beamspace Massive MIMO Systems with Low-Resolution ADCs
Hualian Sheng and Xihan Chen (Zhejiang University, China)
Kaiming Shen (University of Toronto, Canada)
Xiongfeng Zhai (Guangdong University of Technology, China)
An Liu and Minjian Zhao (Zhejiang University, China)

Tuesday, 26 May 2020
11:00 - 12:30 • Room 03

T1-S3: Energy Efficiency in 5G and hetNets
Chair: Wan Choi
(Seoul National University & KAIST, South Korea)

Energy Harvesting-Enabled Full-Duplex DF Relay Systems with Improper Gaussian Signaling
Jhe-Yi Lin and Ronald Y. Chang (Academia Sinica, Taiwan)
Hen-Wai Tsao and Hsuan-Jung Su
(National Taiwan University, Taiwan)

Low-Complexity Hybrid Precoding and Combining Scheme Based on Array Response Vectors
Kyoungchun Lee and Eduard Bahingayi (Seoul National University of Science and Technology, South Korea)

Energy Efficiency Optimization for Beamspace Massive MIMO Systems with Low-Resolution ADCs
Hualian Sheng and Xihan Chen (Zhejiang University, China)
Kaiming Shen (University of Toronto, Canada)
Xiongfeng Zhai (Guangdong University of Technology, China)
An Liu and Minjian Zhao (Zhejiang University, China)
TECHNICAL PROGRAMS

Energy-Efficient Design for Massive Access in 5G Cellular Internet of Things
Xiaoming Chen and Feiyan Tian (Zhejiang University, China)

Energy Efficient Ultra-Dense Network Using Long Short-Term Memory
Junwon Son, Seungmyun Kim and Byonghyo Shim (Seoul National University, South Korea)

Tuesday, 26 May 2020
11:00 - 12:30 • Room 05

T2-S1: Multiple Access
Chair: Minseok Choi (Jeju National University, USA)

LISTCAN: Visible Light Uni-Directional Control Channel for Uplink Radio Access
Sharan Naribole (Samsung Semiconductor, Inc., USA)
Edward W. Knightly (Rice University, USA)

A Joint Angle and Distance Based User Pairing Strategy for Millimeter Wave NOMA Networks
Xiaolin Lu and Yong Zhou (ShanghaiTech University, China)
Vincent W.S. Wong (University of British Columbia, Canada)

An Adapted RFID Anti-Collision Algorithm in a Dynamic Environment
Weiping Zhu and Mingzhe Li (Wuhan University, China)
Jiannong Cao (Hong Kong Polytechnic University, Hong Kong)
Xiaohui Cui (Wuhan University, China)

A Simple Novel Idle Slot Prediction and Avoidance Scheme Using Prediction Bits for DFSA in RFID
Gan Luan (Beijing University of Posts and Telecommunications, China)
Norman C Beaulieu (Beijing University of Posts and Telecommunications BUPT, China)

ML Estimation and MAP Estimation for Device Activity in Grant-Free Massive Access with Interference
Dongdong Jiang (Shanghai Jiao Tong University, China)
Ying Cui (Shanghai Jiaotong University, China)

Tuesday, 26 May 2020
11:00 - 12:30 • Room 06

T3-S1: Learning 1
Chair: Jeongyuep Paek (Chung-Ang University, South Korea)

Robust Federated Learning Under Worst-Case Model
Fan Ang (University of Science & Technology of China, China)
Chen Li (University of Science & Technology of China, China)
Weidong Wang (University of Science & Technology of China, China)

SAAdroid: A Deep Classification Model for Android Malware Detection Based on Semantic Analysis
Dali Zhu (Institute of Information Engineering, Chinese Academy of Sciences, China)
Tong Xi (Institute of Information Engineering, Chinese Academy of Sciences & School of Cyber Security, University of Chinese Academy of Sciences, China)
Pengfei Jing (Institute of Information Engineering, Chinese Academy of Sciences, China)
Qing Xia (Institute of Software, Chinese Academy of Sciences, China)
Di Wu and Yiming Zhang (Institute of Information Engineering, Chinese Academy of Sciences, China)

Semi-Federated Learning
Zhikun Chen, Daofeng Li, Ming Zhao, Sihai Zhang and Jinkang Zhu (University of Science and Technology of China, China)

Optimization-Driven Hierarchical Deep Reinforcement Learning for Hybrid Relaying Communications
Yuze Zou (Huazhong University of Science and Technology, China)
Yutong Xie (Shenzhen Institutes of Advanced Technology, China)
Canhui Zhang and Shimin Gong (Sun Yat-sen University, China)
Hoang Thai Dinh (University of Technology Sydney (UTS), Australia)
Dusit Niyato (Nanyang Technological University, Singapore)

Tuesday, 26 May 2020
11:00 - 12:30 • Room 07

T3-S2: Sensor Network and IoT 1
Chair: Wei Liu (Chongqing University of Technology, China)

Impact of Packet Routing Scheme on Post-Failure Industrial Wireless Sensor Networks
Rajith M Bandarage, Geoffrey G. Messier and Abraham O Fapojuwo (University of Calgary, Canada)

Wireless Backhaul Strategies for Real-Time High-Density Seismic Acquisition
Varun Amar Reddy and Gordon Stüber (Georgia Institute of Technology, USA)
Suhail Al-Dharrab, Ali H Muqaibel and Wessam Mesbah (King Fahd University of Petroleum & Minerals, Saudi Arabia)
Asymmetric Wake-Up Scheduling-Based on Block Designs in Wireless Sensor Networks
Teuk-Seob Song (Mokwon University, South Korea)
Woosik Lee (SSIS, South Korea)
Jong-Hoon Youn (University of Nebraska - Omaha, USA)

On the Coverage Performance of Boolean-Poisson Cluster Models for Wireless Sensor Networks
Kaushlendra Pandey
(Indian Institute of Technology, Kanpur, India)
Abhishek K Gupta
(Indian Institute of Technology Kanpur, India)

FMUCR: Fuzzy-Based Multi-Hop Unequal Cluster Routing for WSN
Lu Sixu, Wu Mueling and Min Zhao
(Beijing University of Posts and Telecommunications, China)

Tuesday, 26 May 2020
11:00 - 12:30 • Room 08

T3-S3: Fog Computing and Networking
Chair: Byung-Seo Kim (Hongik University, South Korea)

A Collaborative Task Offloading Scheme in D2D-Assisted Fog Computing Networks
Nanxin Fan and Xiaoxiang Wang (Beijing University of Posts and Telecommunications, China)
Dongyu Wang (Beijing University of Posts and Telecommunications & Key Laboratory of Universal Wireless Communications, Ministry of Education, China)
Yanwen Lan and Junxu Hou (Beijing University of Posts and Telecommunications, China)

An Energy-Efficient Mixed-Task Paradigm in Resource Allocation for Fog Computing
Xincheng Chen (Xi’an Jiaotong University, China)
Yuchen Zhou (Xidian University, China)
Long Yang
(Xidian University, China & University of Alberta, Canada)
Lu Lv (Xidian University, China)

Latency Minimization with Optimum Workload Distribution and Power Control for Fog Computing
Samant Atapattu (University of Melbourne, Australia)
Chathuranga Weeraddana (University of Moratuwa, Sri Lanka)
Minhua Ding
(Sri Lanka Institute of Information Technology, Sri Lanka)
Hazer Inaltekin (Macquarie University, Australia)
Jamie S Evans (University of Melbourne, Australia)

Mobility Prediction-Based Joint Task Assignment and Resource Allocation in Vehicular Fog Computing
Xianjing Wu, Shengjie Zhao and Rongqing Zhang
(Tongji University, China)
Liuqing Yang (Colorado State University, USA)

Distributed V2V Computation Offloading Based on Dynamic Pricing Using Deep Reinforcement Learning
Jinming Shi (Tsinghua University, China)
Jun Du (Tsinghua University, Beijing, China)
Jian Wang and Jian Yuan (Tsinghua University, China)

Tuesday, 26 May 2020
11:00 - 12:30 • Room 10

T4-S1: Streaming and Video
Chair: Youngbin Im (UNIST, South Korea)

Distributed Video Analysis for Mobile Live Broadcasting Services
Yuanqi Chen
(Nanjing University Of Science and Technology, China)
Yongjie Guan (UNC Charlotte, USA)
Tao Han (University of North Carolina at Charlotte, USA)

Optimal Buffering for High Quality Video Streaming in D2D Underlay Networks
Suvasdi Batabyal (BITS Pilani, Hyderabad Campus, India)
Ozgur Ercetin (Sabanci University, Turkey)

Joint Quality Selection and Caching for SVC Video Services in Heterogeneous Networks
Jianwen Meng, Hancheng Lu and Jinxue Liu
(University of Science and Technology of China, China)

Reducing Latency in Interactive Live Video Chat Using Dynamic Reduction Factor
Yangxin Zhao, Anfu Zhou
(Beijing University of Posts and Telecommunications, China)
Xiaojian Chen (Alibaba Group, China)

QFR: A QoE-Driven Fine-Grained Routing Scheme for Virtual Reality Video Streaming Over SDN
Xiaoyu Liu, Yumei Wang and Yu Liu
(Beijing University of Posts and Telecommunications, China)
TECHNICAL PROGRAMS

Tuesday, 26 May 2020

11:00 - 12:30 • Room 11

T4-S2: Security and Privacy
Chair: Hyang-Won Lee (Konkuk University, South Korea)

- Blockchain and Stackelberg Game Model for Roaming Fraud Prevention and Profit Maximization
 Cong Thanh Nguyen (Ho Chi Minh City University of Technology, VNU-HCM, Vietnam)
 Diep N. Nguyen (University of Technology Sydney, Australia)
 Hoang Thai Dinh (University of Technology Sydney (UTS), Australia)
 Hoang-Anh Pham (Ho Chi Minh City University of Technology & Vietnam National University Ho Chi Minh City, Vietnam)
 Nguyen Huynh Tuong (Faculty of Computer Science & Engineering, Ho Chi Minh City University of Technology, Vietnam)
 Eryk Dutkiewicz (University of Technology Sydney, Australia)

- Weighted Trustworthiness for ML Based Attacks Classification
 Zina Chkirkene (Qatar University & Electrical Engineering, Qatar)
 Aiman Erbad, Ridha Hamila, Ala Gouissiem, Amr Mohamed and Mohsen Guizani (Qatar University, Qatar)
 Mounir Hamdi (Hamad Bin Khalifa University, Qatar)

- Wearable Proxy Device-Assisted Authentication Request Filtering for Implantable Medical Devices
 Zting Zhang (Beijing University of Posts and Telecommunications, China)
 Xiaodong Xu (Beijing University of Posts and Telecommunications & Wireless Technology Innovation Institute, China)
 Shujuan Han and Yacong Liang (Beijing University of Posts and Telecommunications, China)
 Cong Liu (China Mobile Research Institute, China)

- A New Privacy-Preserving Framework Based on Edge-Fog-Cloud Continuum for Load Forecasting
 Shiming Hou and Hongjia Li (Chinese Academy of Sciences, China)
 Chang Yang (Institute of Information Engineering, Chinese Academy of Sciences, China)
 Liming Wang (Chinese Academy of Sciences, China)

Tuesday, 26 May 2020

14:00 - 15:30 • Room 01

T1-S4: NOMA (Non-Orthogonal Multiple Access)
Chair: Wonjae Shin (Pusan National University, South Korea)

- Covert Non-Orthogonal Multiple Access
 Hien Ta and Sang Wu Kim (Iowa State University, USA)

- Finite-Alphabet Signature Design for Grant-Free NOMA Using Quantized Deep Learning
 Hanxiao Yu, Fei Zesong, Zhong Zheng and Neng Ye (Beijing Institute of Technology, China)
 Sen Wang (China Mobile Research Institute, China)

- Physical Layer Secrecy of NOMA-Based Hybrid Satellite-Terrestrial Relay Networks
 Vinay Bankey, Vibhum Singh and Prabhat Kumar Upadhyay (Indian Institute of Technology Indore, India)

- Performance Analysis of the Virtual Full-Duplex Non-Orthogonal Multiple Access Systems
 Yafang Zhang and Suili Feng (South China University of Technology, China)

- Compressive Sensing Based User Activity Detection and Channel Estimation in Uplink NOMA Systems
 Yuanchen Wang (University of Liverpool, United Kingdom (Great Britain))
 Xu Zhu (University of Liverpool, United Kingdom (Great Britain) & Harbin Institute of Technology, Shenzhen, China)
 Eng Gee Lim (Xi’an Jiaotong-Liverpool University, China)
 Zhongxiang Wei (University College London & School of EE and CS, United Kingdom (Great Britain))
 Yujie Liu (University of Liverpool, United Kingdom (Great Britain))
 Yufei Jiang (Harbin Institute of Technology, Shenzhen, China)

Tuesday, 26 May 2020

14:00 - 15:30 • Room 02

T1-S5: Next-Generation Communications
Chair: Yo-Seb Jeon (POSTECH, South Korea)

- Chemical Reactions-Based Detection Mechanism for Molecular Communications
 Trang N Cao (University of Melbourne, Australia)
 Vahid Jamali (Friedrich-Alexander-University Erlangen-Nürnberg, Germany)
 Wayan Wicke (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany)
 Phee Lep Yeoh (University of Sydney, Australia)
 Nikolai Zlatanov (Monash University, Australia)
 Jamie S Evans (University of Melbourne, Australia)
 Robert Schober (Friedrich-Alexander University Erlangen-Nuremberg, Germany)

- Generalized Dimming Control Scheme with Optimal Dimming Control Pattern for VLC
 Congcong Wang, Yang Yang, Caili Guo, Zhimin Zeng and Chunyan Feng (Beijing University of Posts and Telecommunications, China)
TECHNICAL PROGRAMS

Characterization for High-Speed Railway Channel Enabling Smart Rail Mobility at 22.6 GHz
Lei Ma, Ke Guan, Dong Yan, Danping He and Bo Ai
(Beijing Jiaotong University, China)
Junhyeong Kim and Hee Sang Chung (ETRI, South Korea)

Transmit Laser Selection for Dual Hop Decode and Forward UOWC Cooperative Communication
Anirban Bhowal and Rakhes Singh Kshetrimayum
(Indian Institute of Technology Guwahati, India)

Hybrid Multiplexing in OFDM-Based VLC Systems
Cheng Chen
(University of Edinburgh, United Kingdom (Great Britain))
Iman Tavakkolnia (University of Edinburgh & LiFi Research and Development Centre, United Kingdom (Great Britain))
Mohammad Dehghani Soltani and Majid Safari
(University of Edinburgh, United Kingdom (Great Britain))
Harald Haas
(The University of Edinburgh, United Kingdom (Great Britain))

Tuesday, 26 May 2020
14:00 - 15:30 • Room 03

T1-S6: Channel Modeling
Chair: Inkyu Bang (Hanbat National University, South Korea)

Joint Channel Equalization and Symbol Detection for IoT Devices in Severe Multipath Channels
Shusen Jing, Joseph Hall, Yahong Rosa Zheng and Chengshan Xiao (Lehigh University, USA)
Zhiqun Deng (Pacific Northwest National Laboratory, USA)

A Novel Massive MIMO Beam Domain Channel Model
Fan Lai (Southeast University, China)
Cheng-Xiang Wang
(Southeast University & Heriot-Watt University, China)
Jie Huang and Xiqi Gao (Southeast University, China)
Fu-Chun Zheng (University of York, United Kingdom (Great Britain) & Southeast University, China)

Geometry Based Stochastic Channel Modeling Using Ambit Processes
Rakesh R. T. and Emanuele Viterbo
(Monash University, Australia)

A Practical Non-Stationary Channel Model for Vehicle-to-Vehicle MIMO Communications
Weidong Li and Qiuming Zhu
(Nanjing University of Aeronautics and Astronautics, China)
Cheng-Xiang Wang
(Southeast University & Heriot-Watt University, China)
Fei Bai, Xiao-min Chen and Xu Dazhuan
(Nanjing University of Aeronautics and Astronautics, China)

Effects On Polarization Characteristics of Off-Body Channels with Dynamic Users
Kenan Turbic (INESC-ID / IST, University of Lisbon, Portugal)
Luis M. Correia
(IST/INESC-ID - University of Lisbon & INESC, Portugal)

Tuesday, 26 May 2020
14:00 - 15:30 • Room 04

T1-S7: Waveform and Modulation
Chair: Joon Ho Cho (Pohang University of Science and Technology (POSTECH), South Korea)

Cancellation Symbol Insertion for Spectrally Compact OFDM Pilot Waveform
Char-Din Chung (National Taiwan University, Taiwan)
Wei-Chang Chen
(National Taipei University of Technology, Taiwan)
Jia-Ling Jiang (MediaTek Inc., Taiwan)

Low Complexity Iterative Rake Detector for Orthogonal Time Frequency Space Modulation
Tharaj Thaj and Emanuele Viterbo
(Monash University, Australia)

The Impact of CFO on OFDM Based Physical-Layer Network Coding with QPSK Modulation
Ling Fu Xie (Faculty of EECS, Ningbo University, China)
Ivan Wang-Hei Ho and Zhenhui Situ
(The Hong Kong Polytechnic University, Hong Kong)
Peiya Li (Jinan University, China)

A Novel Hybrid MSK Modulation Scheme for Additional Data Transmission
Zhengguang Xu
(Huazhong University Of Science and Technology, China)

Performance Analysis of Various Waveforms and Coding Schemes in V2X Communication Scenarios
Waqar Anwar (Technische Universität Dresden, Germany)
Anton Krause (TU Dresden, Germany)
Atul Kumar, Norman Franchi and Gerhard P. Fettweis
(Technische Universität Dresden, Germany)

Tuesday, 26 May 2020
14:00 - 15:30 • Room 05

T2-S2: Learning-Assisted Optimization
Chair: Jeongho Kwak (DGIST, South Korea)

Buffer-Aware Wireless Scheduling Based on Deep Reinforcement Learning
Chen Xu and Jian Wang (Huawei Technologies Co., Ltd., China)
Tianhang Yu (Huawei Technologies Co., Ltd., China)
Chuili Kong, Yourui Huangfu and Rong Li
(Huawei Technologies Co., Ltd., China)
Yiqun Ge (Huawei Technologies Canada Inc, Canada)
Jun Wang (Huawei Technologies Co., Ltd., China)
TECHNICAL PROGRAMS

Jointly Sparse Signal Recovery via Deep Auto-Encoder and Parallel Coordinate Descent Unrolling
Shuaichao Li and Wanqing Zhang
(Shanghai Jiao Tong University, China)
Ying Cui (Shanghai Jiao Tong University, China)

Deep Reinforcement Learning Based Indoor Air Quality Sensing by Cooperative Mobile Robots
Zhiwen Hu (Peking University, China)
Tiankuo Song (Beijing 101 Middle School, Beijing, China)
Kaigui Bian and Lingyang Song (Peking University, China)

Learning Cooperation Schemes for Mobile Edge Computing Empowered Internet of Vehicles
Jiayu Cao, Ke Zhang, Fan Wu and Supeng Leng (University of Electronic Science and Technology of China, China)

Distributed Deep Reinforcement Learning with Wideband Sensing for Dynamic Spectrum Access
Umuralp Kaytaz (Koc University, Turkey)
Seyhan Ucar
(Toyota Motor North America R&D, InfoTech Labs, USA)
Baris Akgun and Sinem Coleri (Koc University, Turkey)

T3-S4: Localization
Chair: Jiguang He (University of Oulu, Finland)

Wimage: Crowd Sensing Based Heterogeneous Information Fusion for Indoor Localization
Fangmin Li (Shenzhen Institutes of Advanced Technology Chinese Academy of Science, China)
Yubin Zhao (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China)
Xiaofan Li
(The State Radio Monitoring Center & Testing Center, China)
Cheng-Zhong Xu (University of Macau, China)

Flight Path Optimization for UAVs to Provide Location Service to Ground Targets
Youpeng Wang and Xiaojun Zhu
(Nanjing University of Aeronautics and Astronautics, China)
Lijie Xu
(Nanjing University of Posts & Telecommunications, China)

Cooperative Localization in Wireless Sensor Networks with AOA Ranging Measurements
Xianbo Jiang
(Beijing University of Posts and Telecommunications, China)
Shengchu Wang
(Beijing University of Posts and Telecommunications, China)

Depthwise Separable Convolution Based Passive Indoor Localization Using CSI Fingerprint
Wenjing Xun, Lijuan Sun, Chong Han, Zhaoxiao Lin and Jian Guo
(Nanjing University of Posts and Telecommunications, China)

Packet Corruption Tolerant Localization for Underwater Acoustic Sensor Networks
Keyong Hu, Xiuliang Song and Zhongwei Sun
(Qingdao University of Technology, China)
Hanjiang Luo
(Shandong University of Science and Technology, China)
Zhongwen Guo (Ocean University of China, China)

On the Localization of Unmanned Aerial Vehicles with Cellular Networks
Irshad A. Meer, Mustafa Ozger and Cicek Cavdar
(KTH Royal Institute of Technology, Sweden)

T3-S5: Energy Efficiency
Chair: Rong Chai (Chongqing University of Posts and Telecommunications, China)

Energy and Spectral Efficiency Tradeoff in OFDMA Networks via Antenna Selection Strategy
Derrick Wing Kwan Ng
(University of New South Wales, Australia)

Packet Corruption Tolerant Localization for Underwater Acoustic Sensor Networks
Keyong Hu, Xiuliang Song and Zhongwei Sun
(Qingdao University of Technology, China)
Hanjiang Luo
(Shandong University of Science and Technology, China)
Zhongwen Guo (Ocean University of China, China)

Heterogeneity-Based Energy-Efficient Transmission in Dense Small Cell Networks
Shie Wu (Yantai University, P.R. China)
Rui Yin (School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, China)
Ningfei Dong (Yantai University, China)
Xia Liu (Yantai University, P.R. China)

Dynamic Load Adjustments for Small Cells in Heterogeneous Ultra-Dense Networks
Qi Zhang
(Beijing University of Posts and Telecommunications, China)
Xiaodong Xu (Beijing University of Posts and Telecommunications & Wireless Technology Innovation Institute, China)
Jingxuan Zhang and Xiaofeng Tao
(Beijing University of Posts and Telecommunications, China)
Cong Liu (China Mobile Research Institute, China)

Energy Efficient Joint Resource Allocation and Clustering Algorithm for M2M Communication Systems
Changzhu Liu, Rong Chai and Ahmad Zubair (Chongqing University of Posts and Telecommunications, China)
Technical Programs

Energy Efficient Bidirectional Relaying Network Coded HARQ Transmission Scheme for S-IoT
Zilin Ni (Harbin Institute of Technology, China)
Jian Jiao (Harbin Institute of Technology - Shenzhen, China)
Shiqi Liu (Harbin Institute of Technology (Shenzhen), China)
Shaohua Wu (Harbin Institute of Technology, China)
Qinyu Zhang (Shenzhen Graduate School, Harbin Institute of Technology, China)

Tuesday, 26 May 2020
14:00 - 15:30 • Room 08

T3-S6: Routing
Chair: Yichao Jin (Toshiba Research Europe Ltd, United Kingdom (Great Britain))

A Three-Level Routing Hierarchy in Improved SDN-MEC-VANET Architecture
Xuefeng Ji, Wenquan Xu, Chuwen Zhang and Bin Liu (Tsinghua University, China)

NIHR: Name/ID Hybrid Routing in Information-Centric VANET
Wenquan Xu, Xuefeng Ji, Chuwen Zhang and Bin Liu (Tsinghua University, China)

FNTAR: A Future Network Topology-Aware Routing Protocol in UAV Networks
Jianfei Peng (Nanjing University of Aeronautics and Astronautics, China)
Hang Gao and Liang Liu (College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China)
Xiangyu Xu (Nanjing University Of Aeronautics and Astronautics, China)

Exploiting Mobile Contact Patterns for Message Forwarding in Mobile Opportunistic Networks
Mohd Yaseen Mir and Chih-Lin Hu (National Central University, Taiwan)

Reliable and Power Confined Routing in Large and Densely Deployed 6TiSCH Mesh Networks
Yichao Jin (Toshiba Research Europe Ltd, United Kingdom (Great Britain))
Michael Baddeley (Toshiba Research Europe Ltd., United Kingdom (Great Britain))
Usman Raza (Toshiba Research Europe Ltd., United Kingdom (Great Britain))
Aleksandar Stanoev (Toshiba Research Europe Ltd, United Kingdom (Great Britain))
Mahesh Sooriyabandara (Toshiba Research Europe Limited, United Kingdom (Great Britain))

Tuesday, 26 May 2020
14:00 - 15:30 • Room 11

T4-S3: Localization and Tracking
Chair: Jin-Ho Chung (Ulsan National Institute of Science and Technology, South Korea)

NLOS-Aware VLC-Based Indoor Localization: Algorithm Design and Experimental Validation
Chuanxi Huang (Institut Supérieur d’Électronique de Paris (ISEP), France)
Xun Zhang (Institut Supérieur d’Electronique de Paris, France)
Fen Zhou (Institut Supérieur d’Electronique de Paris (ISEP) & University of Avignon, France)
Zhan Wang and Lina Shi (ISEP, France)

ROLATIN: Robust Localization and Tracking for Indoor Navigation of Drones
Ali Reza Famili and Jung-Min (Jerry) Park (Virginia Tech, USA)

Indoor Localization with Particle Filter in Multiple Motion Patterns
Qiao Li, Xuewen Liao and Zhenzhen Gao (Xi'an Jiaotong University, China)

An Enhanced Direction Calibration Based on Reinforcement Learning for Indoor Localization System
Qiao Li, Xuewen Liao and Zhenzhen Gao (Xian Jiaotong University, China)

TLS-Regularization Framework for Target Tracking Under Perturbations
Mostafizur Laskar (Indian Institute of Technology Kharagpur, India)
Debarati Sen (Indian Institute of Technology Kharagpur, India)

Tuesday, 26 May 2020
16:00 - 17:30 • Room 01

T1-S8: Low Latency Communications
Chair: Jemin Lee (Daegu Gyeongbuk Institute of Science and Technology (DGIST), South Korea)

Cross-Link Interference Suppression By Orthogonal Projector for 5G Dynamic TDD URLLC Systems
Ali Esswie (Nokia Bell Labs, Denmark)
Klaus Pedersen (Nokia - Bell Labs, Denmark)

Robust Integration of Computation and Communication in B5G Cellular Internet of Things
Qiao Qi (ZheJiang University, China)
Xiaoming Chen, Caijun Zhong and Zhaoyang Zhang (Zhejiang University, China)
Dynamic HARQ with Guaranteed Delay
Mahyar Shirvanimoghaddam (University of Sydney, Australia)
Hossein Khayami (Sharif University of Technology, Iran)
Yonghui Li and Branka Vucetic
(University of Sydney, Australia)

On Error Rate Analysis for URLLC Over Multiple Fading Channels
Jinho Choi (Deakin University, Australia)

Fast Cross Layer Authentication Scheme for Dynamic Wireless Network
ZhiYuan Zhang, Na Li, Shida Xia and Xiaofeng Tao
(Beijing University of Posts and Telecommunications, China)

Deep Learning Based Fast Downlink Channel Reconstruction for FDD Massive MIMO Systems
Mengyu Li and Yu Han (Southeast University, China)
Chao-Kai Wen (National Sun Yat-sen University, Taiwan)
Xiao Li and Shi Jin (Southeast University, China)

Deep Learning Based Low-Rank Channel Recovery for Hybrid Beamforming in Millimeter-Wave Massive MIMO
Nuan Song, Chenhui Ye and Xiaofeng Hu
(Nokia Bell Labs China, China)
Tao Yang (Nokia Shanghai Bell, China)

IMNet: A Learning Based Detector for Index Modulation Aided MIMO-OFDM Systems
Jinxue Liu and Hancheng Lu
(University of Science and Technology of China, China)

Blind Packet-Based Receiver Chain Optimization Using Machine Learning
Mohammed Radi (TU Dresden, Germany)
Emil Matus and Gerhard P. Fettweis
(Technische Universität Dresden, Germany)

Neural Network MIMO Detection for Coded Wireless Communication with Impairments
Omer Sholev (Ben Gurion University, Israel)
Haim P Permuter (Ben-Gurion University of the Negev, Israel)
Eilam Ben-Dror (Huawei Technologies Ltd., Israel)
Wenliang Liang (China)

Tuesday, 26 May 2020
16:00 - 17:30 • Room 02

T1-S9: Deep Learning for Wireless Communications 2
Chair: Junil Choi (KAIST, South Korea)

Deep Learning Based Fast Downlink Channel Reconstruction for FDD Massive MIMO Systems
Mengyu Li and Yu Han (Southeast University, China)
Chao-Kai Wen (National Sun Yat-sen University, Taiwan)
Xiao Li and Shi Jin (Southeast University, China)

Deep Learning Based Low-Rank Channel Recovery for Hybrid Beamforming in Millimeter-Wave Massive MIMO
Nuan Song, Chenhui Ye and Xiaofeng Hu
(Nokia Bell Labs China, China)
Tao Yang (Nokia Shanghai Bell, China)

IMNet: A Learning Based Detector for Index Modulation Aided MIMO-OFDM Systems
Jinxue Liu and Hancheng Lu
(University of Science and Technology of China, China)

Blind Packet-Based Receiver Chain Optimization Using Machine Learning
Mohammed Radi (TU Dresden, Germany)
Emil Matus and Gerhard P. Fettweis
(Technische Universität Dresden, Germany)

Neural Network MIMO Detection for Coded Wireless Communication with Impairments
Omer Sholev (Ben Gurion University, Israel)
Haim P Permuter (Ben-Gurion University of the Negev, Israel)
Eilam Ben-Dror (Huawei Technologies Ltd., Israel)
Wenliang Liang (China)

Tuesday, 26 May 2020
16:00 - 17:30 • Room 02

T1-S10: Multiple Access and Interference Management
Chair: Sang-Woon Jeon (Hanyang University, South Korea)

Multiplexing More Data Streams in the MU-MISO Downlink by Interference Exploitation Precoding
Ang Li (Xi’an Jiaotong University, China)
Christos Masouros
(University College London, United Kingdom (Great Britain))
Xuewen Liao (Xi’an Jiaotong University, China)
Yonghui Li and Branka Vucetic
(University of Sydney, Australia)

Intelligent Reflecting Surface Assisted Non-Orthogonal Multiple Access
Gang Yang, Xinyue Xu and Ying-Chang Liang
(University of Electronic Science & Technology of China, China)

Bit Error Probability for Asynchronous Channel Access with Interference Cancellation and FBMC
Maxim Penner and Sami Akın
(Leibniz Universität Hannover, Germany)
Martin Fuhrwerk (Baker Hughes, Germany)
Jürgen Peissig (Leibniz Universität Hannover, Germany)

Full Duplex Based Digital Out-of-Band Interference Cancellation for Collocated Radios
Thomas Ranström
(Swedish Defense Research Agency, Sweden)
Erik Axell (Swedish Defence Research Agency, Sweden)

Adaptive Threshold Detection and ISI Mitigation in Mobile Molecular Communication
Amit Kumar Shrivastava and Debanjan Das (International Institute of Information Technology, Naya Raipur, India)
Rajarshi Mahapatra (IIIT Naya Raipur, India)

Tuesday, 26 May 2020
16:00 - 17:30 • Room 05

T2-S3: Scheduling and Radio Resource Management
Chair: Jianwei Huang
(The Chinese University of Hong Kong, Hong Kong)

Novel QoS Control Framework for Automotive Safety-Related and Infotainment Services
Daniel Fabian Külzer
(BMW Group Research and Technology, Germany)
Slawomir Stanczak (Technische Universität Berlin & Fraunhofer Heinrich Hertz Institute, Germany)
Mladen Botsov (BMW Group, Germany)

A Coalition Game for Backscatter-Aided Passive Relay Communications in Wireless-Powered D2D Networks
Xiaozheng Gao (Beijing Institute of Technology, China)
Dusit Niyato (Nanyang Technological University, Singapore)
Kai Yang and Jianping An
(Beijing Institute of Technology, China)
TECHNICAL PROGRAMS

Proportional Fairness Through Dual Connectivity in Heterogeneous Networks
Pradnya Kiri Taksande and Prasanna Chaporkar
(IIT Bombay, India)
Pranav Jha (Indian Institute of Technology Bombay, India)
Abhay Karandikar (IIT Bombay, India)

On Optimizing Signaling Efficiency of Retransmissions for Voice LTE
Chia-An Hsu and Kate Ching-Ju Lin
(National Chiao Tung University, Taiwan)
Yi Ren
(University of East Anglia, United Kingdom (Great Britain))
Yu-Chee Tseng (National Chiao-Tung University, Taiwan)

Joint Optimization of Control and Resource Management for Wireless Sensor and Actuator Networks
Zhuwei Wang, Yuehui Guo, Yang Sun, Chao Fang and Wenjun Wu (Beijing University of Technology, China)

Physical Layer Security in Multi-Tag Ambient Backscatter Communications - Jamming vs. Cooperation
Ji Yoon Han, Mi Ji Kim, Junsu Kim and Su Min Kim
(Korea Polytechnic University, South Korea)

Tuesday, 26 May 2020
16:00 - 17:30 • Room 06

T3-S7: Learning 2
Chair: Anis Elgabli (University of Oulu, Finland)

End-Edge Coordinated Inference for Real-Time BYOD Malware Detection Using Deep Learning
Xinrui Tan (State Key Laboratory of Information Security & Institute of Information Engineering, China)
Hongjia Li, Liming Wang and Zhen Xu
(Chinese Academy of Sciences, China)

MSDF: A Deep Reinforcement Learning Framework for Service Function Chain Migration
Ruoyun Chen and Hancheng Lu
(University of Science and Technology of China, China)
Yujiao Lu (USTC, China)
Jinxue Liu (University of Science & Technology of China, China)

L-FGADMM: Layer-Wise Federated Group ADMM for Communication Efficient Decentralized Deep Learning
Anis Elgabli (University of Oulu, Finland)
Jihong Park (Deakin University, Australia)
Sabbir Ahmed (University of Oulu, Finland)
Mehdi Bennis (Centre of Wireless Communications, University of Oulu, Finland)

Root Cause Analysis of Noisy Neighbors in a Virtualized Infrastructure
Hedi Bouattour (ORANGE, France)
Yosra Ben Slimen (Orange Labs Belfort, France)
Marouen Mechtri and Hanane Biallach
(Orange Labs Networks, France)

Federated Learning Under Channel Uncertainty: Joint Client Scheduling and Resource Allocation
Madhusanka Dinesh Weeraratne Manimel Wadu and Sumudu Samarakaon (University of Oulu, Finland)
Mehdi Bennis (Centre of Wireless Communications, University of Oulu, Finland)

Tuesday, 26 May 2020
16:00 - 17:30 • Room 07

T3-S8: Sensor Network and IoT 2
Chair: Wei Liu (Chongqing University of Technology, China)

On the Age of Information for Multicast Transmission with Hard Deadlines in IoT Systems
Jie Li and Yong Zhou (ShanghaiTech University, China)
He Chen (The Chinese University of Hong Kong, Hong Kong)

Exact Algorithms for Barrier Coverage with Line-Based Deployed Rotatable Directional Sensors
Zijing Ma, Shuangjuan Li and Dong Huang
(South China Agricultural University, China)

Genetic Algorithm-Based Periodic Charging Scheme for Energy Depletion Avoidance in WRSNs
Huong Thi Tran (Ha Noi University of Science, Vietnam)
Phi Le Nguyen
(Hanoi University of Science and Technology, Vietnam)
Huynh Thi Thanh Binh (HUST, Vietnam)
Kien Nguyen (Chiba University, Japan)
Minh Hai Ngo
(Hanoi University of Science and Technology, Vietnam)
Vinh Le (Vietnam National University, Vietnam)

Simplified Theoretical Model Based Self-Adaptive Packet Reception Rate Estimation in Sensor Networks
Wei Liu (Chongqing University of Technology, China)
Yi Ren
(Nanjing University of Aeronautics and Astronautics, China)
Jian Xie (Chongqing University of Technology, China)

Decision Triggered Data Transmission and Collection in Industrial Internet of Things
Jiguang He (University of Oulu, Finland)
Long Kong (Interdisciplinary Centre for Security, Reliability and Trust (SnT) & University of Luxembourg, Luxembourg)
Tero Frondelius
(R&D and Engineering, Wärtsilä, Vaasa, Finland)
Olli Silven and Markku Junnti (University of Oulu, Finland)
Tuesday, 26 May 2020
16:00 - 17:30 • Room 08

T3-S9: Device-to-Device Communication
Chair: You-Chiu Wang
(National Sun Yat-Sen University, Taiwan)

Distributed Deep Learning Power Allocation for D2D Network Based on Outdated Information
Jiaqi Shi, Qianqian Zhang, Ying-Chang Liang and Xiaojun Yuan (University of Electronic Science and Technology of China, China)

Efficient Load Rearrangement of Small Cells with D2D Relay for Energy Saving and QoS Support
You-Chiu Wang (National Sun Yat-Sen University, Taiwan)
Zong-Han Lin (National Sun Yat-sen University, Taiwan)

Intelligent Bluetooth Device to Device Connection Shift
Praneeth Juturu, Veerabhadrappa Chilakanti and Gowtham Babu (Samsung R&D Institute Bangalore, India)

Contextual Multi-Armed Bandit Based Pricing Scheme for Cooperative D2D Communications
Yue Meng and Zhaowei Wang (China Academy of Electronics and Information Technology (CAEIT), China)

D2D Assisted Beamforming for Coded Caching
Hamidreza Bakshzad Mahmoodi
(University of Oulu, Finland)
Jarkko Kaleva (Solu Technologies, Finland)
Pooya Shariyatpanahi
(Institute for Research in Fundamental Sciences (IPM), Iran)
Antti Tölli (University of Oulu, Finland)

Tuesday, 26 May 2020
16:00 - 17:30 • Room 10

T4-S4: URLLC
Chair: Hu Jin (Hanyang University, South Korea)

Low-Complexity Centralized Multi-Cell Radio Resource Allocation for 5G URLLC
Ali Karimi (Aalborg University, Denmark)
Klaus I. Pedersen
(Nokia-Bell Labs, Aalborg University, Denmark)
Preben Mogensen
(Nokia-Bell Labs, Research Center Aalborg, Sweden)

A Fully Coordinated New Radio-Unlicensed System for Ultra-Reliable Low-Latency Applications
Roberto Maldonado Cuevas (Aalborg University, Denmark)
Claudio Rosa (Nokia, Denmark)
Klaus Pedersen (Nokia - Bell Labs, Denmark)

Analysis of High-Reliable and Low-Latency Communication Enablers for New Radio Unlicensed
Roberto Maldonado Cuevas (Aalborg University, Denmark)
Claudio Rosa (Nokia, Denmark)
Klaus Pedersen (Nokia - Bell Labs, Denmark)

Robust URLLC Packet Scheduling of OFDM Systems
Jing Cheng and Chao Shen (Beijing Jiaotong University, China)
Shuqiang Xia (ZTE Corporation, China)

Efficient and Reliable Wireless Communications Through Multi-Connectivity and Rateless Coding
Philipp Schulz (Technische Universität Dresden, Germany)
Andre N Barreto (Barkhausen Institut gGmbH, Germany & Universidade de Brasilia, Brazil)
Gerhard Fettweis (Barkhausen Institut, Germany)

Transceiver Design for Full-Duplex Ultra-Reliable Low-Latency Communications with Finite Blocklength
Keshav Singh
(National Sun Yat-sen University, Kaohsiung, Taiwan)
Sudip Biswas
(Indian Institute of Information Technology, Guwahati, India)
Meng-Lin Ku (National Central University, Taiwan)
Mark Flanagan (University College Dublin, Ireland)

Tuesday, 26 May 2020
16:00 - 17:30 • Room 11

T4-S5: Vehicular Networks
Chair: Yeongjin Kim (Inha University, South Korea)

Energy-Efficient Power Control and Resource Allocation for V2V Communication
Lei Gao
(Beijing University of Posts & Telecommunications, China)
Yanzhao Hou, Xiaofeng Tao and Min Zhu
(Beijing University of Posts and Telecommunications, China)

Vehicle Platooning Schemes Considering V2V Communications: A Joint Communication / Control Approach
Tiago Rocha Goncalves (CentraleSupelec, France)
Vineeth S Varma (CRAN & CNRS, France)
Salah Eddine Elayoubi (CentraleSupelec, France)

Maximization of Con-Current Links in V2V Communications Based on Belief Propagation
Xunchao Wu, Yanzhao Hou and Xiaofeng Tao
(Beijing University of Posts and Telecommunications, China)
Xiaosheng Tang
(Beijing University of Posts & Telecommunications, China)
TECHNICAL PROGRAMS

Analytical Performance Evaluation of the Collective Perception Service in IEEE 802.11p Networks
Florian Alexander Schiegge (Leibniz University of Hanover & Robert Bosch GmbH, Germany)
Daniel Bischoff (Technical University Darmstadt & Opel Automobile GmbH, Germany)
Johannes Ruben Krost (Robert Bosch Car Multimedia GmbH, Germany)
Ignacio Llatser (Robert Bosch GmbH, Germany)

Path Optimization for Flying Base Stations in Multi-Cell Networks
Jongyul Lee and Vasilis Friderikos (King’s College London, United Kingdom (Great Britain))

Wednesday, 27 May 2020
11:00 - 12:30 • Room 01

T1-S11: Millimeter-Wave Systems 2
Chair: Jiho Song (University of Ulsan, South Korea)

Hybrid Multi-User Precoding for mmWave Massive MIMO in Frequency-Selective Channels
Shijian Gao (Colorado State University, USA)
Xiang Cheng (Peking University, China)
Luqing Yang (Colorado State University, USA)

Secrecy Rate Analysis of mmWave MISO Ad Hoc Networks with Null Space Precoding
Ahmed F Darwesh and Abraham O Fapojuwo (University of Calgary, Canada)

SINR Coverage Analysis of Dense HetNets Over Fox’s H-Fading Channels
Imene Trigui (University of Toronto, Canada)
Soﬁene Affes (INRS-EMT, Canada)
Marco Di Renzo (Paris-Saclay University & CNRS, France)
Dushantha Nalin K. Jayakody (National Research Tomsk Polytechnic University & Sri Lanka Technological Campus, Russia)

Coverage Analysis of Relay Assisted Millimeter Wave Cellular Networks with Spatial Correlation
Simin Xu (Australian National University, Australia)
Nan Yang (The Australian National University, Australia)
Biao He (MediaTek USA Inc., USA)
Hamid Jafarkhani (University of California, Irvine, USA)

Performance Analysis of Opportunistic Millimeter Wave Cloud-RAN with Nakagami-Blockage Channels
Behrouz Maham (Nazarbayev University, Kazakhstan)

Wednesday, 27 May 2020
11:00 - 12:30 • Room 02

T1-S12: Multi-Antenna System
Chair: Daeyoung Park (Inha University, South Korea)

Time Switching Protocol for Multi-Antenna SWIPT Systems
Seewoo Kang (Korea University, South Korea)
Hoon Lee (Pukyong National University, South Korea)
Sangwon Hwang and Inkyu Lee (Korea University, South Korea)

Adaptive Antenna Array with Weight and Antenna Space Control
Kenta Umebayashi and Yoshimasa Kimoto (Tokyo University of Agriculture and Technology, Japan)
Antti Tölli (University of Oulu, Finland)

Channel Correlation Cancelation-Based Hybrid Beamforming for Massive Multiuser MIMO Systems
Xinbo Wang, Li Guo, Chao Dong and Xidong Mu (Beijing University of Posts and Telecommunications, China)

IRS-Enhanced Wideband MU-MISO-OFDM Communication Systems
Hongyu Li, Rang Liu, Ming Li, Qian Liu and Xuanheng Li (Dalian University of Technology, China)

MF-Based Dimension Reduction Signal Compression for Fronthaul-Constrained Distributed MIMO C-RAN
Fred Wiffen and Angela Doufexi (University of Bristol, United Kingdom (Great Britain))
Mohammad Z Bocus (Toshiba Research Europe Ltd, United Kingdom (Great Britain))
Woon Hau Chin (Toshiba Research Europe Limited, United Kingdom (Great Britain))

Wednesday, 27 May 2020
11:00 - 12:30 • Room 03

T1-S13: Information Theory and Capacity
Chair: Sang-Woon Jeon (Hanyang University, South Korea)

How Does Channel Coding Affect the Design of Uplink SCMA Multidimensional Constellations?
Monirosharieh Vameghestahbanati, Ian D. Marsland, Ramy Gohary and Halim Yanikomeroglu (Carleton University, Canada)
Javad Abdoli (Huawei Technologies Canada Co., Ltd., Canada)

Capacity Analysis of Time-Indexed Media-Based Modulation
Bharath Shamasundar (Indian Institute of Science, India)
Lakshmi Narasimhan Theagarajan (Indian Institute of Technology, Palakkad, India)
A. Chockalingam (Indian Institute of Science, India)
TECHNICAL PROGRAMS

Average Secrecy Capacity of SIMO κ-μ Shadowed Fading Channels with Multiple Eavesdroppers
Jiangfeng Sun and Hongxia Bie
(Beijing University of Posts and Telecommunications, China)
Xingwang Li (Henan Polytechnic University, China)
Khaled M. Rabie and Rupak Kharel (Manchester Metropolitan University, United Kingdom (Great Britain))

LDPC-Staircase Codes for Soft Decision Decoding
Viduranga Wijekoon, Emanuele Viterbo and Yi Hong
(Monash University, Australia)

On the Construction of -coset Codes for Parallel Decoding
Xianbin Wang, Huazi Zhang, Rong Li and Jiajie Tong
(Huawei Technologies Co., Ltd., China)
Yiqun Ge (Huawei Technologies Canada Inc., Canada)
Jun Wang (Huawei Technologies Co. Ltd, China)

Traffic-Aware Beam Selection and Resource Allocation for 5G NR
Yu-Hsuan Liu and Kate Ching-Ju Lin
(National Chiao Tung University, Taiwan)

POET: An Energy-Efficient Resource Management Mechanism for One-to-Many D2D Communications
Jun Huang
(Chongqing University of Posts and Telecomm, China)
Guohuan Wang (Chongqing Univ of Posts and Telecom & School of Commu. and Info. Eng., China)
Cong-cong Xing (Nicholls State University, USA)

Cross-Layer Resource Allocation in NOMA Systems with Dynamic Traffic Arrivals
Huiyi Ding (The University of Hong Kong, Hong Kong)
Ka-Cheong Leung
(Harbin Institute of Technology, Shenzhen, China)

Joint Power Allocation and Beam-Forming Design for Dual-Connectivity Wireless Networks
Minh Thang Nguyen, Jiho Song and Sungoh Kwon
(University of Ulsan, South Korea)
Kyung Sook Kim (ETRI, South Korea)

Wednesday, 27 May 2020
11:00 - 12:30 • Room 06

T3-S10: Mobile Edge Computing 1
Chair: Shengheng Liu (Southeast University & Purple Mountain Laboratories, China)

Joint Computation Offloading, SFC Placement, and Resource Allocation for Multi-Site MEC Systems
Phuong-Duy Nguyen (INRS - University of Quebec, Canada)
Long Bao Le (INRS, University of Quebec, Canada)

Task Offloading for End-Edge-Cloud Orchestrated Computing in Mobile Networks
Chuan Sun, Hui Li, Xiuhua Li, Wen Junhao and Qinyu Xiong (Chongqing University, China)
Xiaofei Wang (Tianjin University, China)
Victor C.M. Leung (University of British Columbia, Canada)

MeFILL: A Multi-Edged Framework for Intelligent and Low Latency Mobile IoT Services
Ruichun Gu, Lei Yu and Junxing Zhang
(Inner Mongolia University, China)

Learning Based Fluctuation-Aware Computation Offloading for Vehicular Edge Computing System
Zhitong Liu, Xuefei Zhang, Jian Zhang, Dian Tang and Xiaofeng Tao
(Chongqing University of Posts and Telecommunications, China)

Wednesday, 27 May 2020
11:00 - 12:30 • Room 07

T3-S11: NOMA (Non-Orthogonal Multiple Access)
Chair: Hangguan Shan (Zhejiang University, China)

Online Maneuver Design for UAV-Enabled NOMA Systems via Reinforcement Learning
Yuwei Huang
(University of Science and Technology of China, China)
Xiaopeng Mo (GDUT, China)
Jie Xu
(The Chinese University of Hong Kong, Shenzhen, China)
Ling Qiu
(University of Science and Technology of China, China)
Yong Zeng (Southeast University, China)
TECHNICAL PROGRAMS

NOMA Based VR Video Transmission Exploiting User Behavioral Coherence
Ping Xiang, Hangguan Shan, Zhaoyang Zhang and Yu Lu (Zhejiang University, China)
Tony Q. S. Quek (Singapore University of Technology and Design, Singapore)

Joint User Association and Resource Allocation for NOMA-Based MEC: A Matching-Coalition Approach
Guangyuan Zheng, Chen Xu and Liangrui Tang (North China Electric Power University, China)

User Scheduling and Energy Management with QoS Provisioning for NOMA-Based M2M Communications
Chunhui Feng and Qinghai Yang (Xidian University, China)
Meng Qin (School of Electronics and Computer Engineering, Peking University, China)
Kyung Sup Kwak (Inha University, South Korea)

Joint Reflection Coefficient Selection and Subcarrier Allocation for Backscatter Systems with NOMA
Farhad Dashli Ardakani (The University of British Columbia, Canada)
Vincent W.S. Wong (University of British Columbia, Canada)

A Spectrum Aware Mobility Pattern Based Routing Protocol for CR-VANETs
Sharmin Akter and Nafees Mansoor (University of Liberal Arts Bangladesh, Bangladesh)

Wednesday, 27 May 2020
11:00 - 12:30 • Room 10

T4-S6: Edge Computing and Caching
Chair: Youngbin Im (UNIST, South Korea)

Overlay Coded Multicast for Edge Caching in 5G-Satellite Integrated Networks
Xinmu Wang, Hewu Li, Tianming Lan and Qian Wu (Tsinghua University, China)

An EPEC Analysis Among Mobile Edge Caching, Content Delivery Network and Data Center
Yue Yu (Southeast University, China)
Xiao Tang (Northwestern Polytechnical University, China)
Yiyong Zha and Yunfei Zhang (Tencent, China)
Tiecheng Song (National Mobile Communications Research Laboratory, Southeast University, China)
Zhu Han (University of Houston, USA)

Design and Implementation on a LoRa System with Edge Computing
Zhiming Liu, Qihao Zhou and Lu Hou (Beijing University of Posts and Telecommunications, China)
Rongtao Xu (Beijing Jiaotong University, China)
Kan Zheng (Beijing University of Posts & Telecommunications, China)

Collaborative Edge Computing and Caching in Vehicular Networks
Zhuoxing Qin and Supeng Leng (University of Electronic Science and Technology of China, China)
Jihua Zhou (Institute of Computing Technology, Chinese Academy of Sciences, China)
Sun Mao (University of Electronic Science and Technology of China, China)

Latency Guaranteed Edge Inference via Dynamic Compression Ratio Selection
Xiufeng Huang and Sheng Zhou (Tsinghua University, China)

Wednesday, 27 May 2020
14:00 - 15:30 • Room 01

T1-S14: Signal Processing for Millimeter-wave and THz Communications
Chair: Namyoun Lee (POSTECH, South Korea)

Measurement of 2x2 LoS Terahertz MIMO Channel
Suresh Singh, Thanh Le and Ha Tran (Portland State University, USA)
TECHNICAL PROGRAMS

Precoding with the Assistance of Attitude Information in Millimeter Wave MIMO System
Shiyu Zhou
(University of Science and Technology of China, China)
Chen Li (University of Science and Technology of China, China)
Weidong Wang
(University of Science and Technology of China, China)

A Novel 3D Space-Time-Frequency Non-Stationary Channel Model for 6G THz Indoor Communication Systems
Jun Wang (Southeast University, China)
Cheng-Xiang Wang
(Southeast University & Heriot-Watt University, China)
Jie Huang and Haiming Wang (Southeast University, China)

Measurement-Based Characterization of 73GHz Propagation Channels in Scatterer-Rich Environments
Zeyu Huang, José Rodriguez-Piñeiro, Xuefeng Yin and Yejian Lv (Tongji University, China)
Haowen Wang (Shanghai Research Center for Wireless Communications, China)

Frequency-Selective Analog Beam Probing for Millimeter Wave Communication Systems
Christoph Jans (Technische Universität Dresden, Germany)
Xiaohang Song (Technical University of Dresden, Germany)
Wolfgang Rave (Dresden University of Technology, Germany)
Gerhard P. Fettweis
(Technische Universität Dresden, Germany)

Wednesday, 27 May 2020
14:00 - 15:30 • Room 01

T1-S15: Networking Application
Chair: Yunquan Dong (Nanjing University of Information Science and Technology, China)

Practical Framework for Beam Feature-Based Physical Layer Identification in 802.11 ad/ay Networks
Shreyas Gupta (University at Buffalo, USA)
Zhi Sun (State University of New York at Buffalo, USA)
Pu Wang (University of North Carolina at Charlotte, USA)
Arupjyoti (Arup) Bhuyan (INL, USA)

Caching and Pricing Based on Blockchain in a Cache-Delivery Market
Yuanzhuo Lin
(Beijing University of Posts and Telecommunications, China)
Hui Tian
(University of Science and Technology of China, China)
Jiazi Ren and Shaoshuai Fan
(University of Posts and Telecommunications, China)

Network Formation Model of Bio-Nanomachines Based on Directed Migration and Adhesion
Kazuki Yonekura, Tadashi Nakano, Yutaka Okaie, Takahiro Hara and Kaname Harumoto (Osaka University, Japan)

Optimizing Caching Policy and Bandwidth Allocation Towards User Fairness
Pengyu Cong and Chengjian Sun (Beihang University, China)
Dong Liu
(University of Southampton, United Kingdom (Great Britain))
Chenyang Yang (Beihang University, China)

Clustering-Based Scenario-Aware LTE Grant Prediction
Peter Brand, Muhammad Sabih and Joachim Falk (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany)
Jonathan Ah Sue (InteL Deutschland GmbH, Germany)
Jürgen Teich (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany)

Wednesday, 27 May 2020
14:00 - 15:30 • Room 03

T1-S16: Resource Management and Optimization
Chair: Yo-Seb Jeon (POSTECH, South Korea)

Joint Subcarrier and Power Allocation in D2D Communications Underlaying Cellular Networks
Caihong Kai, Yan Wu, Xinyue HU and Wei Huang
(Hefei University of Technology, China)

Cache Allocations for Consecutive Requests of Categorized Contents: Service Provider’s Perspective
Minseok Choi (Jeju National University, USA)
Andreas Molisch (University of Southern California, USA)
Dong-Jun Han (KAIST, South Korea)

Multi-BS Association and Pilot Allocation via Pursuit Learning
Naufan Raharya (University of Sydney, Australia)
Wibowo Hardjawana (The University of Sydney, Australia)
Obada Al-Khatib
(University of Wollongong in Dubai, United Arab Emirates)
Branka Vucetic (University of Sydney, Australia)

Group-Based Multi-User Tracking in Mobile Millimeter-Wave Networks
Peng-Yu Lai (Novatek, Taiwan)
Kuang-Hao (Stanley) Liu
(National Cheng Kung University, Taiwan)

Spectrum Trading in Hybrid RF/FSO Communications: A Stackelberg Game Approach
Shenjie Huang
(University of Edinburgh, United Kingdom (Great Britain))
Majid Safari
(University of Edinburgh, United Kingdom (Great Britain))
Wednesday, 27 May 2020
14:00 - 15:30 • Room 05

T2-S5: Cross-Layer MAC Design
Chair: Kyung-Joon Park (DGIST, South Korea)

Simultaneous Transmit-Receive Multi-Channel Operation in Next Generation WLANs
Sharan Naribole, Wook Bong Lee, Srinivas Kandala and Ashok Ranganath (Samsung Semiconductor, Inc., USA)

A Differentially Private Classification Algorithm with High Utility for Wireless Body Area Networks
Xianwen Sun and Lingyun Shi (North China Electric Power University, China)
Longfei Wu (Fayetteville State University, USA)
Zhita Guan (North China Electric Power University, China)
Xiaojiang Du (Temple University, USA)
Mohen Guizani (Qatar University, Qatar)

Throughput Performance Study of Smart Antenna System in WiFi Networks
Hsin-Li Chiu, Sau-Hsuan Wu and Hsi-Lu Chao (National Chiao Tung University, Taiwan)

Resource Allocation and Throughput Maximization in Decoupled 5G Heterogeneous Networks
Humayun Zubair Khan (National University of Sciences and Technology & MCS CAMPUS, Pakistan)
Mudassar Ali (University of Engineering and Technology Taxila, Pakistan)
Muhammad Naeem (COMSATS University Islamabad, Wah Campus, Pakistan & Ryerson University, Canada)
Imran Rashid (National University of Sciences and Technology, Pakistan)
Adil Siddiqui (Military College of Signals, National University of Sciences and Technology, Pakistan)
Muhammad Imran (National University of Sciences and Technology, Pakistan)
Shahid Mumtaz (Instituto de Telecomunicações, Portugal)

Cross-Layer Analysis of Distributed Passive RFID Systems Over Faded Backscattering Links
Roberto Valentini, Piergiuseppe Di Marco and Roberto Alesi (University of L’Aquila, Italy)
Fortunato Santucci (University of L’Aquila, Italy)

Wednesday, 27 May 2020
14:00 - 15:30 • Room 06

T3-S13: Mesh, Relay, and Ad Hoc Networks
Chair: Wei Liu (Chongqing University of Technology, P.R. China)

Multi-Channel Delay Sensitive Scheduling for Convergecast Network
Daoud Burghal (University of Southern California, USA)
Kyeong Jin Kim (Mitsubishi Electric Research Laboratories (MERL), USA)
Jianlin Guo (Mitsubishi Electric Research Laboratories, USA)
Philip Orlik (Mitsubishi Electric Research Laboratories, USA)
Toshinori Hori (Mitsubishi Electric Corporation, Japan)
Takenori Sumi (Mitsubishi Electric Corporation, Japan)
Yukimasa Nagai (Mitsubishi Electric Research Laboratories, USA)

Secure Routing Protocol in Wireless Ad Hoc Networks via Deep Learning
Feng Hu and Bing Chen (Nanjing University of Aeronautics and Astronautics, China)
Dian Shi and Xinyue Zhang (University of Houston, USA)
Haijun Zhang (University of Science and Technology Beijing, China)
Miao Pan (University of Houston, USA)

Multi-Layer Function Computation in Disorganized Wireless Networks
Fangzhou Wu (University of Science and Technology of China, China)
Chen Li (University of Science & Technology of China, China)
Guo Wei (University of Science & Technology of China, China)

Cognitive Two-Way Relaying with Adaptive Network Coding
Szu-Liang Wang (Chinese Culture University, Taiwan & Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, China); Tsan-Ming Wu (Chung Yuan Christian University, Taiwan)

End-to-End Throughput Optimization in Multi-Hop Wireless Networks with Cut-Through Capability
Liu Shengbo and Lijun Fu (Xiamen University, China)

SourceShift: Resilient Routing in Highly Dynamic Wireless Mesh Networks
Andreas Ingo Grohmann (TU Dresden, Germany)
Frank Gabriel and Sandra Zimmermann (Technische Universität Dresden, Germany)
Frank H.P. Fitzek (Technische Universität Dresden & ComNets - Communication Networks Group, Germany)
TECHNICAL PROGRAMS

Wednesday, 27 May 2020
14:00 - 15:30 • Room 07

T3-S14: Measurement and Analytics 1
Chair: Sihai Zhang
(University of Science and Technology of China, P.R. China)

Real Entropy Can Also Predict Daily Voice Traffic for Wireless Network Users
Sihai Zhang, Junyao Guo, Tian Lan, Rui Sun and Jinkang Zhu
(University of Science and Technology of China, China)

Identifying Cell Sector Clusters Using Massive Mobile Usage Records
Zhe Chen and Emin Aksehirli (DataSpark Pte Ltd, Singapore)

SEdroid: A Robust Android Malware Detector Using Selective Ensemble Learning
Ji Wang, Qi Jing, Jianbo Gao and Xuanwei Qiu
(Peking University, China)

Fine-Grained Analysis and Optimization of Flexible Spatial Difference in User-Centric Network
Danyang Wu
(Beijing University of Posts and Telecommunications, China)
Hongtao Zhang (Beijing University of Posts and Telecommunications & Key Lab of Universal Wireless Communications, Ministry of Education, China)

Capacity Analysis of Distributed Computing Systems with Multiple Resource Types
Pengchao Han (Northeastern University, China)
Shiqiang Wang (IBM T. J. Watson Research Center, USA)
Kin K. Leung (Imperial College, United Kingdom (Great Britain))

Wednesday, 27 May 2020
14:00 - 15:30 • Room 10

T4-S7: Learning for Networks
Chair: Sung Whan Yoon (Korea Advanced Institute of Science and Technology, South Korea)

QLACO: Q-Learning Aided Ant Colony Routing Protocol for Underwater Acoustic Sensor Networks
Zhengru Fang, Jingjing Wang and Chunxiao Jiang
(Tsinghua University, Beijing, China)
Biling Zhang
(Beijing University of Posts and Telecommunications, China)
Chuan Qin (Tsinghua University, China)
Yong Ren (Tsinghua University, Beijing, China)

DeepCReg: Improving Cellular-Based Outdoor Localization Using CNN-Based Regressors
Karim Elawaad, Mohamed Ezzeldin and Marwan Torki
(Alexandria University, Egypt)

Environmental Sensitivity Evaluation of Neural Networks in Unmanned Vehicle Perception Module
Yuru Li (Peking University, China)
Dongliang Duan (University of Wyoming, USA)
Chen Chen and Xiang Cheng (Peking University, China)
Liuling Yang (Colorado State University, USA)

Task Allocation for Mobile Crowdsensing with Deep Reinforcement Learning
Xi Tao and Wei Song (University of New Brunswick, Canada)

Smart Shopping Carts Based on Mobile Computing and Deep Learning Cloud Services
Muhammad Atif Sarwar
(National Chiao Tung University, Taiwan)
Yousef-Awwad Daraghmi
(Palestine Technical University Kadoorie, Palestine)
Kuan-Wen Liu, Hong-Chuan Chi, Tsi-Uí lk and Yih-Lang Li
(National Chiao Tung University, Taiwan)

CRED: Credibility-Enabled Social Network Based Q&A System for Assessing Answers Correctness
Imad Ali
(Academia Sinica and National Tsing Hua University, Taiwan)
Ronald Y. Chang (Academia Sinica, Taiwan)
Cheng-Hsing Hsu (National Tsing Hua University, Taiwan)

Maximizing Clearance Rate by Penalizing Redundant Task Assignment in Mobile Crowdsensing Auctions
Maggie E. Gendy and Ehab F. Badran (Arab Academy for Science, Technology and Maritime Transport, Egypt)
Ahmad Al-Kabbany
(Arab Academy for Science and Technology, Egypt)

Wednesday, 27 May 2020
14:00 - 15:30 • Room 08

T3-S15: Services and Applications
Chair: Ronald Y. Chang (Academia Sinica, Taiwan)

Deep Adaptation Networks Based Gesture Recognition Using Commodity WiFi
Zijun Han and Lingchao Guo
(Beijing University of Posts and Telecommunications, China)
Zhaoxing Lu (BUPT, China)
Xiangming Wen
(Beijing University of Posts and Telecommunications, China)
Wei Zheng (BUPT, China)

Non-Intrusive Leak Monitoring System for Pipeline Within a Closed Space by Wireless Sensor Network
Fang Wang and Weiguo Lin
(Beijing University of Chemical Technology, China)
Zheng Liu (University of British Columbia Okanagan, Canada)
Liang Kong and Xianbo Qiu
(Beijing University of Chemical Technology, China)

Task Allocation for Mobile Crowdsensing with Deep Reinforcement Learning
Xi Tao and Wei Song (University of New Brunswick, Canada)
TECHNICAL PROGRAMS

Edge Caching Replacement Optimization for D2D Wireless Networks via Weighted Distributed DQN
Ruiben Li, Yiwei Zhao, Chenyang Wang and Xiaofei Wang (Tianjin University, China)
Victor C.M. Leung (University of British Columbia, Canada)
Xiuhua Li (Chongqing University, China)
Tarik Taleb (Aalto University, Finland)

Wednesday, 27 May 2020
16:00 - 17:30 • Room 01

T1-S17: 5G Wireless Communications
Chair: Jiho Song (University of Ulsan, South Korea)

Popularity Prediction with Federated Learning for Proactive Caching at Wireless Edge
KaiqiQiang Qi and Chenyang Yang (Beihang University, China)

Ambient Backscatters-Friendly 5G Networks: Creating Hot Spots for Tags and Good Spots for Readers
Romain Fara (Orange Labs, France)
Dinh-Thuy Phan-Huy (Orange-France Telecom, France)
Marco Di Renzo (Paris-Saclay University / CNRS, France)

A Simple Cell-Specific Beamforming Technique for Multi-Antenna Wireless Communications
Maksym A. Girnyk (Ericsson Research, Sweden)
Sven O. Petersson (Ericsson AB, Sweden)

Wireless Fingerprint Aided Spectrum Sensing in Cellular Cognitive Radio Networks
Xin Wang and Siji Chen (Chongqing University of Posts and Telecommunications, China)
Bin Shen (Chongqing University of Posts and Telecommunications (CQUPT), China)
Taiping Cui (Chongqing University of Posts and Telecommunications, China)

Wednesday, 27 May 2020
16:00 - 17:30 • Room 02

T1-S18: Signal Detection and Estimation
Chair: Wonjun Kim (Seoul National University, South Korea)

Reconstruction Algorithm for Primary Channel Statistics Estimation Under Imperfect Spectrum Sensing
Ogeen Toma and Miguel López-Benítez (University of Liverpool, United Kingdom (Great Britain))
Dhaval Karshanbhai Patel (School of Engineering and Applied Science-Ahmedabad University, India)
Kenta Umebayashi (Tokyo University of Agriculture and Technology, Japan)

Methods for Fast Estimation of Primary Activity Statistics in Cognitive Radio Systems
Miguel López-Benítez and Ogeen Toma (University of Liverpool, United Kingdom (Great Britain))
Dhaval Karshanbhai Patel (School of Engineering and Applied Science-Ahmedabad University, India)
Kenta Umebayashi (Tokyo University of Agriculture and Technology, Japan)

Applying Deep Neural Networks for Duty Cycle Estimation
Ahmed Al-Tahmeesschi, Kenta Umebayashi and Hiroki Iwata (Tokyo University of Agriculture and Technology, Japan)
Janne Lehtomäki (University of Oulu, Finland)

Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser Communications
Zhaorui Wang (The Hong Kong Polytechnic University, China)
Liang Liu (The Hong Kong Polytechnic University, China)
Shuguang Cui (The Chinese University of Hong Kong, Shenzhen & Shenzhen Research Institute of Big Data, China)

Dynamic Model Based Malicious Collaborator Detection in Cooperative Tracking
Wang Pi and Pengtao Yang (Peking University, China)
Dongliang Duan (University of Wyoming, USA)
Chen Chen and Xiang Cheng (Peking University, China)
Liuqing Yang (Colorado State University, USA)

Wednesday, 27 May 2020
16:00 - 17:30 • Room 03

T1-S19: Energy Efficient Communications
Chair: Seok-Ho Chang (Konkuk University, South Korea)

Minimization of Sum Inverse Energy Efficiency for Multiple Base Station Systems
Zijian Wang (Université Catholique de Louvain, Belgium)
Luc Vandendorpe (Université Catholique de Louvain, Belgium)
Mateen Ashraf (University Catholique de Louvain, Louvain-la-Neuve, Belgium)
Yuting Mou and Nafiseh Janatian (Université Catholique de Louvain, Belgium)

Joint Optimization for PS-Based SWIPT Multiuser Systems with Non-linear Energy Harvesting
Thang X. Vu, Symeon Chatzinotas, Sumit Gautam and Eva Laguna (University of Luxembourg, Luxembourg)
Björn Ottersten (University of Luxembourg, Luxembourg)

A Novel Low-Complexity Power-Allocation Algorithm for Multi-Tone Signals for Wireless Power Transfer
Boules Mouris (KTH Royal Institute of Technology, Sweden)
Henrik Forssell (KTH, Sweden)
Ragnar Thobaben (KTH Royal Institute of Technology, Sweden)
TOWARDS POWER-EFFICIENT AERIAL COMMUNICATIONS VIA DYNAMIC MULTI-UAV COOPERATION
Lin Xiang, Lei Lei and Symeon Chatzinotas
(University of Luxembourg, Luxembourg)
Björn Ottersten (University of Luxembourg, Luxembourg)
Robert Schober (Friedrich-Alexander University Erlangen-Nuremberg, Germany)

ENERGY EFFICIENCY OPTIMIZATION FOR SECURE TRANSMISSION IN A MIMO-NOMA SYSTEM
Miao Zhang and Kanapathippillai Cumanan
(University of York, United Kingdom (Great Britain))
Wei Wang (Nantong University, China)
Ailister G. Burr
(University of York, United Kingdom (Great Britain))
Zhiguo Ding
(University of Manchester, United Kingdom (Great Britain))
Sangarapillai Lambotharan
(Loughborough University, United Kingdom (Great Britain))
Octavia A. Dobre (Memorial University, Canada)

WEDNESDAY, 27 MAY 2020
16:00 - 17:30 • ROOM 05

T2-S6: WIRELESS MAC FOR 5G
Chair: Joo Hyun Lee (Hanyang University, South Korea)

UAV-ASSISTED DATA COLLECTION WITH NON-ORTHOGONAL MULTIPLE ACCESS
Weichao Chen, Shengjie Zhao and Rongqing Zhang
(Tongji University, China)
Luqing Yang (Colorado State University, USA)

HMC: A HOPPING-BASED MULTI-CHANNEL COORDINATION SCHEME FOR URLLC IN UNLICENSED SPECTRUM
Hsueh-Yi Chen, Pei-Feng Lee and Te-Wei Chiang
(National Central University, Taiwan)
Sheng-Shih Wang
(Lunghua University of Science and Technology, Taiwan)
Shiann-Tsong Sheu (National Central University, Taiwan)

GRAPH-BASED FILE DISPATCHING PROTOCOL WITH D2D-AIDED UAV-NOMA COMMUNICATIONS IN LARGE-SCALE NETWORKS
Baoji Wang (Peking University, China)
Rongqing Zhang (Tongji University, China)
Chen Chen and Xiang Cheng (Peking University, China)
Luqing Yang (Colorado State University, USA)

MDP-BASED RESOURCE ALLOCATION FOR UPLINK GRANT-FREE TRANSMISSIONS IN 5G NEW RADIO
Thilina Weerasinghe, Indika A. M. Balapuwaduge and Frank Y. Li (University of Agder, Norway)
Vicente Casares-Giner
(Universitat Politècnica de València, Spain)

SEMI-STATIC RADIO FRAME CONFIGURATION FOR URLLC DEPLOYMENTS IN 5G MACRO TDD NETWORKS
Ali Esswie (Nokia Bell Labs, Denmark)
Klaus Pedersen (Nokia - Bell Labs, Denmark)
Preben Mogensen
(Nokia–Bell Labs, Research Center Aalborg, Sweden)

Wednesday, 27 May 2020
16:00 - 17:30 • Room 06

T3-S16: MOBILE EDGE COMPUTING 2
Chair: Qi Zhang (Aarhus University, Denmark)

RESOURCE ALLOCATION FOR MULTI-ACCESS EDGE COMPUTING WITH COORDINATED MULTI-POINT RECEPTION
Jian-Jyun Hung and Wanjuan Liao
(National Taiwan University, Taiwan)
Yi-Han Chiang (Osaka Prefecture University, Japan)

JOINT OFFLOADING AND RESOURCE ALLOCATION FOR TIME-SENSITIVE MULTI-ACCESS EDGE COMPUTING NETWORK
Jun-jie Yu, Mingxiong Zhao, Wen-tao Li and Di Liu
(Yunnan University, China)
Shao Wen Yao
(National Pilot School of Software, YunNan University, China)
Wei Feng (Hangzhou Dianzi University, China)

COMPUTATION RESOURCE ALLOCATION FOR HETEROGENEOUS TIME-CRITICAL IOT SERVICES IN MEC
Jianhui Liu and Qi Zhang (Aarhus University, Denmark)

LOCATION-PRIVACY-AWARE SERVICE MIGRATION IN MOBILE EDGE COMPUTING
Weixu Wang, Shuxin Ge and Xiaobo Zhou
(Tianjin University, China)

ADAPTIVE TASK PARTITIONING AT LOCAL DEVICE OR REMOTE EDGE SERVER FOR OFFLOADING IN MEC
Jianhui Liu and Qi Zhang (Aarhus University, Denmark)

Wednesday, 27 May 2020
16:00 - 17:30 • Room 07

T3-S17: MEASUREMENT AND ANALYTICS 2
Chair: Konstantin Mikhaylov
(University of Oulu, Finland)

MUTATION TESTING FRAMEWORK FOR AD-HOC NETWORKS PROTOCOLS
Anis Zarrad (University of Birmingham, United Arab Emirates)
Izzat Alsmadi (Texas A&M San Antonio, USA)
On the Performance of Multi-Gateway LoRaWAN Deployments: An Experimental Study
Konstantin Mikhaylov (University of Oulu & Solmu Technologies OY, Finland)
Martin Stusek (Brno University of Technology, Czech Republic)
Pavel Masek (Brno University of Technology & Member of WISLAB group, Czech Republic)
Radek Fujdiak (Brno University of Technology, Czech Republic)
Radek Možný (Brno Technical University, Czech Republic)
Sergey Andreev (Brno University of Technology, Czech Republic)
Jiri Hosek (Brno University of Technology, Czech Republic)

Big Data Enabled Mobility Robustness Optimization for Commercial LTE Networks
Jaiju Joseph (Aalto University & Elisa Corporation, Finland)
Furqan Ahmed and Tommi Jokela (Elisa Corporation, Finland)
Olav Tirkkonen (Aalto University, Finland)
Juho Poutanen and Jarno Niemelä (Elisa Corporation, Finland)

A No-Reference Video Streaming QoE Estimator Based on Physical Layer 4G Radio Measurements
Diogo F.M. Moura (Instituto Superior Técnico, Portugal)
Marco Sousa (Instituto de Telecomunicações and Celfinet, Portugal)
Pedro Vieira (Instituto de Telecomunicações and ISEL, Portugal)
António J. Rodrigues (IT / Instituto Superior Técnico, Portugal)
Maria Paula Queluz (Instituto Superior Técnico, Portugal)

Monostatic Backscatter Communication in Urban Microcellular Environment Using Cellular Networks
Muhammad Usman Sheikh, Furqan Jameel, Xiyu Wang
Huseyin Yigitler, and Riku Jäntti (Aalto University, Finland)

A Reinforcement Learning Approach for Efficient Opportunistic Vehicle-to-Cloud Data Transfer
Benjamin Sliwa and Christian Wietfeld (TU Dortmund University, Germany)

Relay Selection and Coverage Analysis of Relay Assisted V2I Links in Microcellular Urban Networks
Blanca Ramos Elbal, Stefan Schwarz and Markus Rupp (TU Wien, Austria)

Resource Scheduling for V2V Communications in Co-Operative Automated Driving
Prajwal Keshavamurthy (Universität Kassel, Germany)
Emmanouil Pateromichelakis (Lenovo, Germany)
Dirk Dahlhaus (University of Kassel, Germany)
Chan Zhou (Huawei European Research Center, Germany)

Optimal Receive Beamwidth for Time Varying Vehicular Channels
Yoonseong Kang and Hyowoon Seo (KAIST, South Korea)
Wan Choi (Seoul National University & KAIST, South Korea)

Cluster-Based Cooperative Multicast for Multimedia Data Dissemination in Vehicular Networks
Jianan Sun and Ping Dong (Beijing Jiaotong University, China)
Xiaojiang Du (Temple University, USA)
Jianan Sun and Ping Dong (Beijing Jiaotong University, China)
Mojhe Guizani (Qatar University, Qatar)

Wednesday, 27 May 2020
16:00 - 17:30 • Room 09

T3-S19: 5G
Chair: Ameen Chilwan (Norwegian University of Science and Technology, Norway)

Research Project to Realize Various High-Reliability Communications in Advanced 5G Network
Takahide Murakami, Hiroyuki Shinbo, Yu Tsukamoto, Shinobu Nanba and Yoji Kishi (KDDI Research, Inc., Japan)
Morihiko Tamai (Advanced Telecommunications Research Institute International, Japan)
Hiroyuki Yokoyama (ATR, Japan)
Takanori Hara and Koji Ishibashi (The University of Electro-Communications, Japan)
Kensuke Tsuda and Yoshimi Fuji (Kozo Keikaku Engineering Inc., Japan)
Fumiuki Adachi, Keisuke Kasai and Masataka Nakazawa (Tohoku University, Japan)
Yuta Seki (Panasonic Corporation & Core Element Technology Development Center, Japan)
Takayuki Sotoyama (Panasonic Mobile Communications Co., Ltd., Japan)

Low Complexity Channel Model for Mobility Investigations in 5G Networks
Umur Karabulut (Nokia Bell Labs, Technical University of Dresden, Germany)
Ahmad Awada (Nokia Bell Labs, Germany)
Andre N Barreto (Barkhausen Institut gGmbH, Germany & Universidade de Brasilia, Brazil)
Ingo Viering (Nomor Research GmbH, Germany)
Gerhard P. Fettweis (Technische Universität Dresden, Germany)
Coexistence Management for URLLC in Campus Networks via Deep Reinforcement Learning
Behnam Khodapanah (TU Dresden, Germany)
Tom Hößler (TU Dresden & Barkhausen Institut, Germany)
Baris Alp Yuncu (TU Dresden, Germany)
Andre N Barreto (Barkhausen Institut gGmbH, Germany & Universidade de Brasilia, Brazil)
Meryem Simsek (Intel Labs & International Computer Science Institute, USA)
Gerhard P. Fettweis (Technische Universität Dresden, Germany)

Modeling and Delay Analysis for SDN-Based 5G Edge Clouds
Ameen Chilwan (Norwegian University of Science and Technology, Norway)
Yuming Jiang (Norwegian University of Science and Technology, Norway)

Zero-Touch Coordination Framework for Self-Organizing Functions in 5G
Diego Fernando Preciado Rojas and Faiiz Nazmeddinov (Technische Universität Ilmenau, Germany)
Andreas Mitschele-Thiel (Ilmenau University of Technology, Germany)

Wednesday, 27 May 2020
16:00 - 17:30 • Room 10

T4-S8: Cellular Networks and 5G
Chair: Jeongho Kwak (DGIST, South Korea)

Uplink Joint Detection: From Theory to Practice
Mohamed Amine Dridi (Nokia Bell Labs, France)
Dora Boviz (Nokia, France)
Eric Renault (Institut Mines-Telecom -- Telecom SudParis & Samovar UMR CNRS 5157, France)
Laurent Roulet (Nokia Bell Labs, France)
Ralf Klotsche (Nokia Bell Labs, Germany)

Nonlinear Digital Self-Interference Cancellation with SVR for Full Duplex Communication
Mikail Yilan, Huseyin Ozkan and Ozgur Gurbuz (Sabanci University, Turkey)

A Real-Time Vendor-Neutral Programmable Scheduler Architecture for Cellular Networks
Wenhao Zhang, Zhouyou Gu, Wibowo Hardjawana and Branka Vucetic (The University of Sydney, Australia)
Simon Lumb and David McKechnie (Telstra Corporation Ltd., Australia)
Todd Essery (Telstra, Australia)

User Slicing Scheme with Functional Split Selection in 5G Cloud-RAN
Salma Matoussi (LIGM-CNRS, France)
Ilhem Fajjari (Orange labs, France)
Nadjib Aitsaadi (UVSQ Paris Saclay, France)
Rami Langar (University Gustave Eiffel, France)

Virtual Network Function Deployment Strategy in Clustered Multi-Mobile Edge Clouds
Yijing Liu, Gang Feng and Guanqun Zhao (University of Electronic Science and Technology of China, China)
Zhao Chen (Chongqing University of Technology, China)
Shuang Qin (University of Electronic Science and Technology of China, China)

Thursday, 28 May 2020
10:40 - 12:10 • Room 01

T1-S20: Massive MIMO 1
Chair: Sunwoo Kim (Hanyang University, South Korea)

On the Exact Outage Probability of 2 x 2 MIMO-MRC in Correlated Rician Fading
Prathapasinghe Dharmawansa (University of Moratuwa, Sri Lanka)
Kumara Kahatapitiya (The University of Moratuwa, Sri Lanka)
Saman Atapattu (University of Melbourne, Australia)
Chintha Tellambura (University of Alberta, Canada)

Optimal Relay and Antenna Selection in MIMO Cognitive Relay Network with Imperfect CSI
Priyanka Das (International Institute of Information Technology Bangalore, India)
Rimalapudi Sarvendra Nath (IISc, India)

MSE-Based Transceiver Optimization for Multicarrier MIMO SWIPT Systems
Xingxiang Peng, Peiran Wu and Minghua Xia (Sun Yat-sen University, China)

Low-Complexity Partially-Connected Hybrid Precoding for Massive MIMO Systems
Ming Zhu (Beijing University of Posts and Telecommunications, China)
Gang Xie (Beijing University of Posts and Telecommunications, China)
Xiaolei Qi (Beijing University of Posts and Telecommunications, China)

Physical Layer Authentication for Non-Coherent Massive SIMO-Based Industrial IoT Communications
Zhifang Gu (Southeast University, China)
He Chen (The Chinese University of Hong Kong, Hong Kong)
Pingping Xu (Southeast University, China)
Yonghui Li and Branka Vucetic (University of Sydney, Australia)

Thursday, 28 May 2020
10:40 - 12:10 • Room 02

T1-S21: Coding scheme 1
Chair: Namyoun Lee (POSTECH, South Korea)

An Unequal Coding Scheme for H.265 Video Transmission
Yekeng Huang, Meiying Ji, Jiachen Sun, Baodian Wei and Xiao Ma (Sun Yat-sen University, China)
Symbol-Level Precoding Design for IRS-Assisted MU-MISO Systems
Rang Liu, Hongyu Li, Ming Li and Qian Liu
(Dalian University of Technology, China)

Protograph-Based LDPC-Hadamard Codes
Pengwei Zhang and Francis C.M. Lau
(The Hong Kong Polytechnic University, Hong Kong)
Chiu Wing Sham (The University of Auckland, New Zealand)

Stopping Criterion for NR LDPC Decoder Based on PEXIT Chart Analysis
Taehyun Kim (Samsung Electronics, South Korea)
Joo Sung Park (SAMSUNG Electronics, USA)
Jun Heo (Korea University, South Korea)

Decoding Orders and Power Allocation for Untrusted NOMA: A Secrecy Perspective
Sapna Thapar (Indian Institute of Technology Jammu, India)
Deepak Mishra (University of New South Wales (UNSW) Sydney, Australia)
Ravikant Saini (Indian Institute of Technology Jammu, India)

Thursday, 28 May 2020
10:40 - 12:10 • Room 05

T1-S22: Performance Analysis 1
Chair: Taesoo Kwon (Seoul National University of Science and Technology, South Korea)

Performance Analysis of Distributed Beamforming With Random Phase Offsets
Justin Kong and Fikadu Dagefu (US Army Research Laboratory, USA)
Brian Sadler (Army Research Laboratory, USA)

Performance of Raptor Codes on the BIAWGN Channel in the Presence of SNR Mismatch
Amrit Kharel (Qualcomm Inc., USA)
Hussein Fadhel (University of Mississippi, USA)
Lei Cao (The University of Mississippi, USA)

On Age and Value of Information in Status Update Systems
Peng Zou, Omur Ozel and Suresh Subramaniam (George Washington University, USA)

A Low-Complexity Algorithm for Cell Identity Detection in NB-IoT Physical Layer
Hung-Ying Chang, Jian-Bin Chang and Chao-Yu Chen (National Cheng Kung University, Taiwan)

A Novel Coordinated Multi-Point Downlink Transmission Scheme for Ultra-Dense Networks
Sudarshan Mukherjee (Indian Institute of Technology Guwahati, India)
Dongsun Kim, Hewon Cho and Jemin Lee (Daegu Gyeongbuk Institute of Science and Technology (DGIST), South Korea)

Thursday, 28 May 2020
10:40 - 12:10 • Room 03

T2-S7: Scheduling
Chair: Changhee Joo (Korea University, South Korea)

Co-Optimizing Performance and Fairness Using Weighted PF Scheduling and IAB-Aware Flow Control
Yingjie Zhang (University of California, Davis, USA)
Vishwanath Ramamurthi (Verizon Wireless, USA)
Zhiyi Huang and Dipak Ghosal (University of California, Davis, USA)

Scheduling Stochastic Real-Time Jobs in Unreliable Workers
Yu-Pin Hsu (National Taipei University, Taiwan)
Yu-Chih Huang (National Chiao Tung University, Taiwan)
Shin-Lin Shieh (National Taipei University, Taiwan)

Exception of Dominant Interfering Beam: Low Complex Beam Scheduling in mmWave Networks
Eunkyung Kim (Electronics and Telecommunications Research Institute (ETRI), South Korea)
Jeongho Kwak (DGIST, South Korea)
Song Chong (KAIST, South Korea)

Age of Information in Scheduled Wireless Relay Networks
Masoumeh Moradian (IPM, Iran)
Aresh Dadlani (Nazbarayev University, Kazakhstan)

Thursday, 28 May 2020
10:40 - 12:10 • Room 06

T3-S20: UAV (Unmanned Aerial Vehicle) 1
Chair: Yao Sun (University of Electronic Science and Technology of China, China)

UAV Trajectory and Sub-channel Assignment for UAV Based Wireless Networks
Nguyen Minh Dat (INRS-EMT & University of Quebec, Canada)
Tai Manh Ho (École de Technologie Supérieure ÉTS, Canada)
Long Bao Le (INRS, University of Quebec, Canada)
Andre Girard (INRS-EMT & GERAD, Canada)

Flight Scheduling and Trajectory Control in UAV-Based Wireless Networks
Minh Tri Nguyen (EMT-INRS, University of Quebec, Canada)
Long Bao Le (INRS, University of Quebec, Canada)

Distributed Topology Control Based on Swarm Intelligence in Unmanned Aerial Vehicles Networks
Qianyi Zhang, Gang Feng, Shuang Qin and Yao Sun (University of Electronic Science and Technology of China, China)
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trajectory Design and Generalization for UAV Enabled Networks: A Deep Reinforcement Learning Approach</td>
<td>Xuan Li (Beijing University of Posts and Telecommunications, China)</td>
</tr>
<tr>
<td></td>
<td>Qiang Wang (Beijing University of Posts and Telecommunications, China)</td>
</tr>
<tr>
<td></td>
<td>Jie Liu (Beijing University of Post and Telecommunications, China)</td>
</tr>
<tr>
<td></td>
<td>Wenqi Zhang (Beijing University of Posts and Telecommunications, China)</td>
</tr>
<tr>
<td></td>
<td>Lihua Yin (Guangzhou University, China)</td>
</tr>
<tr>
<td></td>
<td>Institute of Information Engineering, CAS, China</td>
</tr>
<tr>
<td></td>
<td>Ben Niu (Institute of Information Engineering, Chinese Academy of Sciences, China)</td>
</tr>
<tr>
<td></td>
<td>Hui Li (State Key Laboratory of Cryptology, Beijing, China)</td>
</tr>
<tr>
<td></td>
<td>Dengguo Feng (State Key Laboratory of Cryptology, Beijing, China)</td>
</tr>
<tr>
<td></td>
<td>Ben Niu (Institute of Information Engineering, Chinese Academy of Sciences, China)</td>
</tr>
<tr>
<td></td>
<td>Fenghua Li (State Key Laboratory of Information Security, Institute of Information Engineering, CAS, China)</td>
</tr>
<tr>
<td></td>
<td>Lihua Yin (Guangzhou University, China)</td>
</tr>
<tr>
<td>Performance Analysis of Temporal Correlation in Finite-Area UAV Networks with LoS/NLoS</td>
<td>Ruixin Jin (Beijing University of Post and Telecommunications, China)</td>
</tr>
<tr>
<td></td>
<td>Liyun Yang (Beijing University of Posts and Telecommunications, China)</td>
</tr>
<tr>
<td></td>
<td>Hongtao Zhang (Beijing University of Posts and Telecommunications & Key Lab of Universal Wireless Communications, Ministry of Education, China)</td>
</tr>
<tr>
<td></td>
<td>Yih-Chun Hu (University of Illinois at Urbana-Champaign, USA)</td>
</tr>
<tr>
<td>Bloom Filter Based Low-Latency Provenance Embedding Schemes in Wireless Networks</td>
<td>J Harshan (Indian Institute of Technology Delhi, India)</td>
</tr>
<tr>
<td></td>
<td>Amogh Vithalkar, Naman Jhunjhunwala, Manthan Kabra and Prafull Manav</td>
</tr>
<tr>
<td></td>
<td>(Indian Institute of Technology Delhi, India)</td>
</tr>
<tr>
<td>Ergodic Secrecy Rate of K-User MISO Broadcast Channel with Improved Random Beamforming</td>
<td>Ye Fan, Xuewen Liao and Zhenzhen Gao (Xi'an Jiaotong University, China)</td>
</tr>
<tr>
<td>A Secure Authentication Scheme for Remote Diagnosis and Maintenance in Internet of Vehicles</td>
<td>Ruhui Ma and Jin Cao (Xidian University, China)</td>
</tr>
<tr>
<td></td>
<td>Dengguo Feng (State Key Laboratory of Cryptology, Beijing, China)</td>
</tr>
<tr>
<td></td>
<td>Hui Li (Xidian University, China)</td>
</tr>
<tr>
<td></td>
<td>Ben Niu (Institute of Information Engineering, Chinese Academy of Sciences, China)</td>
</tr>
<tr>
<td></td>
<td>Fenghua Li (State Key Laboratory of Information Security, Institute of Information Engineering, CAS, China)</td>
</tr>
<tr>
<td></td>
<td>Lihua Yin (Guangzhou University, China)</td>
</tr>
<tr>
<td>WIRE: Security Bootstrapping for Wireless Device-to-Device Communication</td>
<td>Yinrong Tao, Sheng Xiao and Bin Hao (Hunan University, China)</td>
</tr>
<tr>
<td></td>
<td>Qingquan Zhang (University of Illinois, Urbana Champaign, USA)</td>
</tr>
<tr>
<td></td>
<td>Ting Zhu (University of Maryland, Baltimore County, USA)</td>
</tr>
<tr>
<td></td>
<td>Zhuo Chen (Office of Ecology Protection, Management and Construction Hunan Province, China)</td>
</tr>
<tr>
<td>Utility-Aware Exponential Mechanism for Personalized Differential Privacy</td>
<td>Ben Niu (Institute of Information Engineering, Chinese Academy of Sciences, China)</td>
</tr>
<tr>
<td></td>
<td>Yahong Chen (Institute of Information Engineering, CAS & School of Cyber Security, UCAS, China)</td>
</tr>
<tr>
<td></td>
<td>Boyang Wang (University of Cincinnati, USA)</td>
</tr>
<tr>
<td></td>
<td>Jin Cao (Xidian University, China)</td>
</tr>
<tr>
<td></td>
<td>Fenghua Li (Institute of Information Engineering, CAS School of Cyber Security, UCAS, P.R. China)</td>
</tr>
<tr>
<td>Bloom Filter Based Low-Latency Provenance Embedding Schemes in Wireless Networks</td>
<td>J Harshan (Indian Institute of Technology Delhi, India)</td>
</tr>
<tr>
<td></td>
<td>Amogh Vithalkar, Naman Jhunjhunwala, Manthan Kabra and Prafull Manav</td>
</tr>
<tr>
<td></td>
<td>(Indian Institute of Technology Delhi, India)</td>
</tr>
<tr>
<td></td>
<td>Yih-Chun Hu (University of Illinois at Urbana-Champaign, USA)</td>
</tr>
<tr>
<td>Ergodic Secrecy Rate of K-User MISO Broadcast Channel with Improved Random Beamforming</td>
<td>Ye Fan, Xuewen Liao and Zhenzhen Gao (Xi'an Jiaotong University, China)</td>
</tr>
<tr>
<td>A Secure Authentication Scheme for Remote Diagnosis and Maintenance in Internet of Vehicles</td>
<td>Ruhui Ma and Jin Cao (Xidian University, China)</td>
</tr>
<tr>
<td></td>
<td>Dengguo Feng (State Key Laboratory of Cryptology, Beijing, China)</td>
</tr>
<tr>
<td></td>
<td>Hui Li (Xidian University, China)</td>
</tr>
<tr>
<td></td>
<td>Ben Niu (Institute of Information Engineering, Chinese Academy of Sciences, China)</td>
</tr>
<tr>
<td></td>
<td>Fenghua Li (State Key Laboratory of Information Security, Institute of Information Engineering, CAS, China)</td>
</tr>
<tr>
<td></td>
<td>Lihua Yin (Guangzhou University, China)</td>
</tr>
<tr>
<td>T3-S21: Security and Privacy 1</td>
<td>Chair: J Harshan (Indian Institute of Technology Delhi, India)</td>
</tr>
<tr>
<td>T3-S22: Resource Management and Optimization 1</td>
<td>Chair: Bheemarjuna Reddy Tamma (IIT Hyderabad, India)</td>
</tr>
<tr>
<td>QoS-Driven Stochastic Analysis for Heterogeneous Cognitive Radio Networks</td>
<td>Muyu Mei, Qinghai Yang and Meng Qin (Xidian University, China)</td>
</tr>
<tr>
<td></td>
<td>Kyung Sup Kwak (Inha University, South Korea)</td>
</tr>
<tr>
<td></td>
<td>Ramesh R. Rao (UCSD, USA)</td>
</tr>
<tr>
<td>Joint User-Centric Clustering and Frequency Allocation in Ultra-Dense C-RAN</td>
<td>Qiang Liu, Sun Songlin and Hui Gao (Beijing University of Posts and Telecommunications, China)</td>
</tr>
<tr>
<td>Trading Based Service-Oriented Spectrum-Aware RAN-Slicing Under Spectrum Sharing</td>
<td>Kajia Jiao and Xuanheng Li (Dalian University of Technology, China)</td>
</tr>
<tr>
<td></td>
<td>Miao Pan (University of Houston, USA)</td>
</tr>
<tr>
<td></td>
<td>(Beijing University of Posts and Telecommunications, China)</td>
</tr>
<tr>
<td>Throughput Analysis in Cache-Enabled Millimeter Wave HetNets with Access and Backhaul Integration</td>
<td>Chenwu Zhang, Hao Wu, Hancheng Lu and Jinxue Liu (University of Science and Technology of China, China)</td>
</tr>
<tr>
<td></td>
<td>(Jilin University, China)</td>
</tr>
<tr>
<td></td>
<td>Xiaodong Fu (Jilin University, China)</td>
</tr>
<tr>
<td></td>
<td>Zhuo Chen (Office of Ecology Protection, Management and Construction Hunan Province, China)</td>
</tr>
<tr>
<td>Jointly Optimizing Helpers Selection and Resource Allocation in D2D Mobile Edge Computing</td>
<td>Yang Li, Gaochao Xu and Jiaqi Ge (Jilin University, China)</td>
</tr>
<tr>
<td></td>
<td>Peng Liu (Northeast Forestry University, China)</td>
</tr>
<tr>
<td></td>
<td>Xiaodong Fu (Jilin University, China)</td>
</tr>
<tr>
<td></td>
<td>Zhenjun Jin (Changchun University of Technology, China)</td>
</tr>
</tbody>
</table>
TECHNICAL PROGRAMS

CIRNO: Leveraging Capacity Interference Relationship for Dense Networks Optimization
Srikant Manas Kala (IIT HYDERABAD, India)
Vanlin Sathya (University of Chicago, USA)
Winston K.G. Seah
(Victoria University of Wellington, New Zealand)
Bheemarjuna Reddy Tamma (IIT Hyderabad, India)

Thursday, 28 May 2020
10:40 - 12:10 • Room 10

T4-S9: Recognition and Prediction
Chair: Hyun Jong Yang (UNIST, South Korea)

Performance Evaluation of Driving Behavior Identification Models Through CAN-BUS Data
Mozhgan Nasr Azadani and Azzedine Boukerche
(University of Ottawa, Canada)

PathExtractor: A Path-Semantic Extraction Algorithm for Mobility Prediction
Zhuang Su, Ying Wang and Zhengwei Lyu
(Beijing University of Posts and Telecommunications, China)

Detection of Suspicious Objects Concealed by Walking Pedestrians Using WiFi
Bao Zhou, Zuona Chen, Ziyuan Gong and Rui Zhou
(University of Electronic Science and Technology of China, China)

Human Motion Patterns Recognition Based on RSS and Support Vector Machines
Sameer Ahmad Bhat and Abolfazl Mehboodiya
(Kuwait College of Science and Technology, Kuwait)
Ahmed Elsayed Al Wakeel (KCST, Kuwait)
Julian L Webber (Osaka University & Advanced Telecommunications Research Institute International, Japan)
Khald Albegain
(Kuwait College of Science and Technology, Kuwait)

Location-Free CSI Based Activity Recognition with Angle Difference of Arrival
Yanan Li
(Beijing University of Posts and Telecommunications, China)
Ting Jiang
(Beijing University of Posts & Telecommunications, China)
Xue Ding and Yangyang Wang
(Beijing University of Posts and Telecommunications, China)

Thursday, 28 May 2020
10:40 - 12:10 • Room 11

T4-S10: Crowdsourcing and Incentive Mechanism
Chair: Won-Yong Shin (Yonsei University, South Korea)

Microscopic Traffic Monitoring and Data Collection Cloud Platform Based on Aerial Video
Guan-Wen Chen, Tzu-Chuan Yeh, Ching-Yu Liu and Tsi-Uí Ik
(National Chiao Tung University, Taiwan)

Blockchain-Enabled Computing Resource Trading: A Deep Reinforcement Learning Approach
Zixuan Xie and Run Wu (Sun Yat-sen University, China)
Miao Hu (Sun Yat-Sen University, China)
Haibo Tian (Sun Yat Sen University, China)

Rating-Aware Pre-Cache and Incentive Mechanism Design in Data Offloading
Yiting Luo and Fen Hou (University of Macau, Macao)
Bin Lin (Dalian Maritime University, China)
Guanghua Yang (Jinan University, China)

Incentive Mechanism Design for Mobile Data Rewards Using Multi-Dimensional Contract
Zehui Xiong (Nanyang Technological University, Singapore)
Wei Yang Bryan Lim (Nanyang Technological University & Alibaba Group, Singapore)
Jiawen Kang and Dusit Niyato
(Nanyang Technological University, Singapore)
Ping Wang (York University, Canada)
Chunyan Miao (Nanyang Technological University, Singapore)

VCG-QCP: A Reverse Pricing Mechanism Based on VCG and Quality All-Pay for Collaborative Crowdsourcing
Lifei Hao, Bing Jia, Jingbin Liu, Baoqi Huang and Wuyungerile Li (Inner Mongolia University, China)

Thursday, 28 May 2020
14:00 - 15:30 • Room 01

T1-S23: Machine-Type Communications
Chair: Jemin Lee (Daegu Gyeongbuk Institute of Science and Technology (DGIST), South Korea)

Enhancing Physical Layer Security Using Underlay Full-Duplex Relay-Aided D2D Communications
Majid H Khoshafa, Telex M. N. Ngatched and Mohamed Hossam Ahmed
(Memorial University of Newfoundland, Canada)
Ahmed Mohamed Ali Ibrahim (Memorial University, Canada)

An Exclusion-Based D2D Activation Scheme in Cellular Networks with Hybrid Spectrum Allocation
Libo Chen and Na Deng
(Dalian University of Technology, China)
Haichao Wei (Dalian Maritime University, China)

A Scalable Mobile Multi-Node Channel Sounder
Stefan Zelenbaba
(AIT Austrian Institute of Technology, Austria)
David Löschenbrand
(AIT Austrian Institute of Technology GmbH, Austria)
Markus Hofer (AIT Austrian Institute of Technology, Austria)
Anja Dakić (AIT - Austrian Institute of Technology, Austria)
Benjamin Rainer, Gerhard Humer and Thomas Zemen
(AIT Austrian Institute of Technology GmbH, Austria)
Training Sequence Based Doppler Shift Estimation for Vehicular Communication
Qingpeng Ma
(Beijing University of Posts and Telecommunications, China)
Gang Qiu (ZTE Corporation, China)
Qixun Zhang, Huiqing Sun and Zhiyong Feng
(Beijing University of Posts and Telecommunications, China)
Zhu Han (University of Houston, USA)

Relay-Assisted Device-to-Device Networks: Connectivity and Ueberization Opportunities
Quentin Le Gall (Inria & Orange Labs Networks, France)
Bartlomiej Błaszczymsyn (Inria-Ens, France)
Elie Cali (Orange, France)
Taoufik En-Najjary (Orange Labs, France)

Thursday, 28 May 2020
14:00 - 15:30 • Room 02

T1-S24: Polar Code
Chair: SongNam Hong (Ajou University, South Korea)

Index Modulated Polar Codes
YaJing Deng
(Harbin Institute of Technology, Shenzhen, China)
Shaohua Wu (Harbin Institute of Technology, China)
Xijin Liu (Shenzhen Graduate School, Harbin Institute of Technology, China)
Dongqing Li
(Harbin Institute of Technology (Shenzhen), China)
Jian Jiao (Harbin Institute of Technology - Shenzhen, China)
Qinyu Zhang (Shenzhen Graduate School, Harbin Institute of Technology, China)

Simplified Successive-Cancellation List Decoding of Non-Binary Polar Codes with Rate-1 Node
Baoping Feng, Rong Ke Liu and He Sun
(BeiHang University, China)

Path-Metric-Based False Alarm Reduction in Blind Detection of Polar Codes
Hyosang Ju (Sungkyunkwan University, South Korea)
Min Jang (Samsung Electronics, South Korea)
Hyunjae Lee and Sang-Hyo Kim
(Sungkyunkwan University, South Korea)

Polar Coded Faster-Than-Nyquist (FTN) Signaling with Symbol-by-Symbol Detection
Abdulsamet Caglan (Gebze Technical University, Turkey)
Adem Cicek (Ankara Yildirim Beyazit Universitesi, Turkey)
Enver Cavus (Ankara Yildirim Beyazit University, Turkey)
Ebrahim Bedeer (University of Saskatchewan, Canada)
Halim Yankomeroglu (Carleton University, Canada)

On List Decoding of 5G-NR Polar Codes
Charles Pillet (Huawei Technologies Co. Ltd., France)
Valerio Bioglio
(France Research Center, Huawei Technologies Co. Ltd., Italy)
Carlo Condo (Huawei Technologies Co. Ltd., France)

Thursday, 28 May 2020
14:00 - 15:30 • Room 03

T1-S25: Performance Analysis 2
Chair: Taesoo Kwon (Seoul National University of Science and Technology, South Korea)

Improperness Based SINR Analysis of GFDM Systems Under Joint Tx and Rx I/Q Imbalance
Hao Cheng (School of Information Science and Engineering, Southeast University, China)
Xia Yili, Yongming Huang and Luxi Yang
(Southeast University, China)
Zixiang Xiong
(Texas A&M University & Monash University, USA)
Danilo Mandic
(Imperial College, London, United Kingdom (Great Britain))

Random Caching Strategy in HetNets with Random Discontinuous Transmission
Li Hu (Harbin Institute of Technology (Shenzhen), China)
Fu-Chun Zheng (Harbin Institute of Technology, Shenzhen, China & University of York, United Kingdom (Great Britain))
Jingjing Luo (Harbin Institute of Technology, Shenzhen)
Xu Zhu (University of Liverpool, United Kingdom (Great Britain) & Harbin Institute of Technology, Shenzhen, China)

Optimal Antenna Selection and Power Adaptation for Underlay Spectrum Sharing with Statistical CSI
Rimalapudi Sarvendranath (IISc, India)
Neelesh B. Mehta (Indian Institute of Science, India)

Multichannel ALOHA with Exploration Phase
Jinho Choi (Deakin University, Australia)

An Analysis of Coded Caching Under Arbitrary Popularity Distributions
Abdollah Ghaffari Sheshjavani, Ahmad Khonsari and Seyed Pooya Shariatpanahi (University of Tehran, Iran)
Masoumeh Moradian (IPM, Iran)
Aresh Dadlani (Nazarbayev University, Kazakhstan)

Thursday, 28 May 2020
14:00 - 15:30 • Room 04

T1-S26: Hardware and Implementation
Chair: Jian Wang (Seoul National University, South Korea)

Symbiotic Radio: A New Application of Large Intelligent Surface / Antennas (LISA)
Qianqian Zhang and Ying-Chang Liang (University of Electronic Science and Technology of China, China)
H. Vincent Poor (Princeton University, USA)
Short-Range Ambient Backscatter Communication Using Reconfigurable Intelligent Surfaces
Mahyar Nemati, Jie Ding and Jinho Choi
(Deakin University, Australia)

Two-Way Communications via Reconfigurable Intelligent Surface
Saman Atapattu (University of Melbourne, Australia)
Rongfei Fan (Beijing Institute of Technology, China)
Prathapasinghe Dharmawansa (University of Moratuwa, Sri Lanka)
Gongpu Wang (Beijing Jiaotong University, China)
Jamie S Evans (University of Melbourne, Australia)

Programmable Metasurface Transmitter Aided Multicast Systems
Xiaoling Hu and Caijun Zhong (Zhejiang University, China)
Yongxu Zhu (London South Bank University, United Kingdom (Great Britain))
Xiaoming Chen and Zhaoyang Zhang (Zhejiang University, China)

Advanced Hardware Architectures for Turbo Code Decoding Beyond 100 Gb/s
Stefan Weithoffer (IMT Atlantique, France)
Oliver Griebel (University of Kaiserslautern, Germany)
Rami Klaimi and Charbel Abdel Nour (IMT Atlantique, France)
Norbert Wehn (University of Kaiserslautern, Germany)

On the Feasibility of Location-Based Discovery and Vertical Handover in IEEE 802.11ah
Serena Santi (University of Antwerp - imec, Belgium)
Filip Lemic (University of Antwerpen - imec, Belgium)
Jeroen Famaey (University of Antwerp & Imec, Belgium)

Cellular Network Planning Under Variable QoS Requirements Using Voronoi Algorithm
Mohsen Abedi (Aalto University, Finland)
Risto Wichman (Aalto University School of Electrical Engineering, Finland)

Thursday, 28 May 2020
14:00 - 15:30 • Room 07

T3-S24: Rate Control and Transport Protocol
Chair: Huey-Ing Liu (Fu Jen Catholic University, Taiwan)

Bandwidth Profile for Multi-Timescale Fairness
Szilveszter Nádas (Ericsson Research, Hungary)
Balazs Varga (Ericsson, Hungary)
Illes Horvath (MTA-BME Information Systems Research Group)
Andras Meszaros (Technical University of Budapest (BME), Hungary)
Miklos Telek (Technical University of Budapest, Hungary)

Source Rate Control for Opportunistic Routing
Che-Jung Hsu (Fu Jen Catholic University, Taiwan)
Huey-Ing Liu (Fu Jen Catholic University, Taiwan)

SMS: Smart Multipath Switch for Improving the Throughput of Multipath TCP for Smartphones
Madhan Raj Kanagarathinam (Samsung R&D India Bangalore, India)
Harikrishnan Natarajan (Reliance Jio Infocomm Pvt Ltd, India)
Karthikeyan Arunachalam (Samsung R&D Institute India Bangalore, India)
Venkata Sunil Kumar (Samsung R&D India - Bangalore, India)

CQUIC: Cross-Layer QUIC for Next Generation Mobile Networks
Gaurav Sinha, Madhan Raj Kanagarathinam, Sujith Rengan Jayaseelan and Gunjan Kumar Choudhary
(Samsung R&D Institute India, Bangalore, India)

Novel MultiPipe QUIC Protocols to Enhance the Wireless Network Performance
Gunjan Kumar Choudhary (Samsung Research & Development India, Bangalore, India)
Madhan Raj Kanagarathinam (Samsung R&D Institute India Bangalore, India)
Karthikeyan Arunachalam and Sujith Rengan Jayaseelan (Samsung R&D Institute India - Bangalore, India)
Harikrishnan Natarajan (Reliance Jio Infocomm Pvt Ltd, India)
Debabrata Das (International Institute of Information Technology, Hyderabad, India)
TECHNICAL PROGRAMS

Thursday, 28 May 2020
14:00 - 15:30 • Room 10

T4-S11: Low Power and IoT
Chair: Joohyun Lee (Hanyang University, South Korea)

NB-IoT Micro-Operator for Smart Campus: Performance and Lessons Learned in 5G
Rumana Yasmin (University of Oulu, Finland)
Konstantin Mikhailov (University of Oulu & Solmu Technologies OY, Finland)
Muhammad Arif (University of Oulu, Finland)
Ari T. Pouttu (Centre for Wireless Communications University of Oulu, Finland)
Ville Niemelä (Centre for Wireless Communications, Finland)
Olli Liinamäe (Centre for Wireless Communications, Finland)

University of Oulu, Finland

Collaborative Learning Model for Cyberattack Detection Systems in IoT Industry 4.0
Tran Viet Khoa (VNU University of Engineering and Technology, Vietnam)
Yuris Mulya Saputra (University of Technology Sydney, Australia & Universitas Gadjah Mada, Indonesia)
Hoang Thai Dinh (University of Technology Sydney (UTS), Australia)
Nguyen Linh Trung (Vietnam National University, Hanoi, Vietnam)
Diep N. Nguyen (University of Technology Sydney, Australia)
Nguyen Viet Ha (VNU Ha Noi, Vietnam)
Eryk Dutkiewicz (University of Technology Sydney, Australia)

An Efficient Downlink Receiver Design for NB-IoT
Shutao Zhang, Shiyieng Zeng and Fenglin Ye (Sun Yat-sen University, China)
Ruibo Tang (China Electronics Technology Group Corporation No. 7 Research Institute, China)
Peiran Wu and Minghua Xia (Sun Yat-sen University, China)

An Experimental Performance Evaluation of Bluetooth Mesh Technology for monitoring Applications
Eduardo De Leon and Majid Nabi (Eindhoven University of Technology, The Netherlands)

Extending BLE Beacon Lifetime by a Novel Neural Network-Driven Framework
Kang Eun Jeon, James She and Tat Yuen Simon Wong (Hong Kong University of Science and Technology, Hong Kong)

Thursday, 28 May 2020
14:00 - 15:30 • Room 11

T4-S12: Communications with UAVs
Chair: Han Seung Jang (Chonnam National University, South Korea)

Power Limited Ultra-Reliable and Low-Latency Communication in UAV-Enabled IoT Networks
Kanghua Chen, Ying Wang, Zixuan Fei and Xue Wang (Beijing University of Posts and Telecommunications, China)

Joint Optimization of UAV Trajectory and User Scheduling Based on NOMA Technology
Xuemeng Wu, Zaixue Wei, Zhenqiao Cheng and Xin Zhang (Beijing University of Posts and Telecommunications, China)

Enhancing Cellular Communications for UAVs via Intelligent Reflective Surface
Dong Ma (University of New South Wales, Australia)
Ming Ding (Data 61, Australia)
Mahbub Hassan (University of New South Wales, Australia)
TECHNICAL PROGRAMS

UAV-Based Air-to-Ground Channel Modeling for Diverse Environments
Muhammad Usaid Akram, Usama Saeed and Syed Ali Hassan
(National University of Sciences & Technology, Pakistan)
Haejoon Jung (Incheon National University, South Korea)

Optimizing Transmission and Propulsion Powers for Flying Base Stations
Mohamadsaleh Nikooroo and Zdenek Becvar
(Czech Technical University in Prague, Czech Republic)

Thursday, 28 May 2020
16:00 - 17:30 • Room 01

T1-S27: Massive MIMO 2
Chair: Junil Choi (KAIST, South Korea)

Limits of Transmit and Receive Array Gain in Massive MIMO
Tobias Laas (Huawei Technologies Duesseldorf GmbH and Technical University of Munich, Germany)
Josef A. Nossek (Technical University of Munich, Germany and Federal University of Ceará, Brazil)
Wen Xu (Huawei Technologies Duesseldorf GmbH, Germany)

A Study on Unique-Word Based Synchronization for MIMO Systems Over Time-Varying Channels
Shahab Ehsanfar (Technische Universität Dresden, Germany)
Marwa Chafl (ENSEA, France)
Gerhard P. Fettweis (Technische Universität Dresden, Germany)

ACS-Based Beam Selection for Massive MIMO Interfering Broadcast Channels with Hybrid Precoding
Meng Qi (Shanghai Jiao Tong University, China)
Gui Lin (ShangHai JiaoTong University, China)
Ling Zhang (Shanghai Jiao Tong University, China)

Max-Min Fair Wireless-Powered Cell-Free Massive MIMO for Uncorrelated Rician Fading Channels
Özlem Tuğfe Demir and Emil Björnson (Linköping University, Sweden)

Low Complexity Iterative Parallel Interference Cancellation Algorithms for Massive MIMO System
Bin Shen and Hebiao Wu (Chongqing University of Posts and Telecommunications (CQUPT), China)
Shufeng Zhao and Taiping Cui (Chongqing University of Posts and Telecommunications, China)

Thursday, 28 May 2020
16:00 - 17:30 • Room 02

T1-S28: Coding Scheme 2
Chair: SongNam Hong (Ajou University, South Korea)

On the Error Probability of Interference Exploitation Precoding with Power Allocation
Abdelhamid Salem (UCL, United Kingdom (Great Britain))
Christos Masouros (University College London, United Kingdom (Great Britain))

A Low-Complexity Dual Trellis Decoding Algorithm for High-Rate Convolutional Codes
Vinh Hoang Son Le, Charbel Abdel Nour and Catherine Douillard (IMT Atlantique, France)
Emmanuel Boutillon (Université de Bretagne Sud, France)

A Modified Rejection-Based Architecture to Find the First Two Minima in Min-Sum-Based LDPC Decoders
Alireza Hasani (Brandenburg University of Technology Cottbus-Senftenberg & IHP GmbH - Innovations for High Performance Microelectronics, Germany)
Lukasz Lopacinski (IHP, Germany)
Steffen Büchner (Brandenburgische Technische Universität Cottbus-Senftenberg, Germany)
Jörg Nolte (BTU Cottbus, Germany)
Rolf Kraemer (IHP Microelectronics, Frankfurt/Oder & BTU-Cottbus, Germany)

Space-Time Coding for Orbital Angular Momentum Multiplexed Free-Space Optical Systems
El Mehdi Amhoud (Mohammed VI Polytechnic University, Morocco)
Ghaya Rekaya-Ben Othman (TELECOM ParisTech, France)

Space-Time Waveform Coding for Joint Radar and Wireless Communications (RadCom) Applications
Jan Mietzner (Hamburg University of Applied Sciences (HAW), Germany)
Avik Santra (Infineon Technologies AG, Germany)

Thursday, 28 May 2020
16:00 - 17:30 • Room 03

T1-S29: Transceiver Design
Chair: Jun Won Choi (Hanyang University, South Korea)

A Distance-Detection Receiver for Ambient Backscatter Communications with MPSK RF Source
Youyou Zhang (UESTC, China)
Ying-Chang Liang (University of Electronic Science and Technology of China, China)
Pooli-Yuen Kam (National University of Singapore, Singapore)
On the Information Transfer Rate of SPAD Arrays
Elham Sarbazi and Majid Safari
(University of Edinburgh, United Kingdom (Great Britain))
Harald Haas
(The University of Edinburgh, United Kingdom (Great Britain))

Defeating Smart and Reactive Jammers with Unlimited Power
Huynh Van Nguyen
(University of Technology Sydney, Australia)
Hoang Thai Dinh
(University of Technology Sydney (UTS), Australia)
Diep N. Nguyen and Eryk Dutkiewicz
(University of Technology Sydney, Australia)
Markus Dominik Mueck (Intel Deutschland GmbH, Germany)

Filter Bank Multicarrier Transmission Based on the Discrete Hartley Transform
Chin-Liang Wang, Hong-Shiuann Pan and Chia-Tung Tuan
(National Tsing Hua University, Taiwan)

Distributed Detection with Non-Identical Sensors: Fusion in the Air or at the Receiver?
Smruti Ranjan Ranjan Panigrahi (University of Gävle & KTH Royal Institute of Technology, Sweden)
Niclas Björsell (University of Gävle, Sweden)
Mats Bengtsson (KTH Royal Institute of Technology, Sweden)

Efficient Deployment of UAV-Powered Sensors for Optimal Coverage and Connectivity
Oktay Cetinkaya and Geoff V Merrett
(University of Southampton, United Kingdom (Great Britain))

Multi-UAV Collaborative Data Collection for IoT Devices Powered by Battery
Yue Wang
(Beijing University of Posts and Telecommunication, China)
Xiang Ming Wen
(Beijing University of Posts and Telecommunications, China)
Zhiqun Hu (Hubei University, China)
Zhaoming Lu (BUPT, China)
Jiansong Miao and Chuanzhi Sun
(Beijing University of Posts and Telecommunications, China)
Hang Qi (Beijing University of Posts and Telecommunications & BUPT, China)

Resource Allocation for UAV Assisted Wireless Networks with QoS Constraints
Weihang Ding (Kings College London, China)
Zhao Hui Yang
(King’s College London, United Kingdom (Great Britain))
Mingzhe Chen (Princeton University, USA)
Jiancao Hou and Mohammad Shikh-Bahaei
(King’s College London, United Kingdom (Great Britain))

Trajectory Design for Energy Harvesting UAV Networks: A Foraging Approach
Xuanlin Liu, Sihua Wang and Changchuan Yin
(Beijing University of Posts and Telecommunications, China)
Mingzhe Chen (Princeton University, USA)
Walid Saad (Virginia Tech, USA)

Rogue Access Point Localization Leveraging Compressive Sensing via Kernel Optimization
Qiaolin Pu and Joseph Kee-Yin Ng
(Hong Kong Baptist University, Hong Kong)
Shijie Deng and Fawen Zhang (Chongqing University of Posts and Telecommunications, China)

MalPortrait: Sketch Malicious Domain Portraits Based on Passive DNS Data
Zhizhou Liang and Zang Tianning
(Institute of Information Engineering, Chinese Academy of Sciences, China)
Yuwei Zeng (University of Chinese Academy of Sciences & Institute of Information Engineering, China)

Revisiting Compressive Sensing Based Encryption Schemes for IoT
Gajraj Kuldeep and Qi Zhang (Aarhus University, Denmark)

Robust Self-Protection Against Application-Layer (D) DoS Attacks in SDN Environment
Chafika Benzaid, Mohammed Boukhalfa and Tarik Taleb
(Aalto University, Finland)
TECHNICAL PROGRAMS

Thursday, 28 May 2020
16:00 - 17:30 • Room 08

T3-S28: Resource Management and Optimization 3
Chair: Hamed Mirghasemi
(Université Catholique de Louvain-la-Neuve, Belgium)

An Efficient QoS-Aware Computational Resource Allocation Scheme in C-RAN
Mojgan Barahman (Instituto Superior Técnico/ University of Lisbon, Portugal)
Luis M. Correia (IST/INESC-ID - University of Lisbon & INESC, Portugal)
Lúcio Studer Ferreira (ISTEC / ULHT COPELABS / INESC-ID, Portugal)

Maximum Allowable Transfer Interval Aware Scheduling for Wireless Remote Monitoring
Mounssf Krouka and Anis Elgabli (University of Oulu, Finland)
Mehdi Bennis (Centre of Wireless Communications, University of Oulu, Finland)

User Association in Software-Defined Wi-Fi Networks for Enhanced Resource Allocation
Blas Gómez (University of Castilla-La Mancha, Spain)
Estefanía Coronado (Fondazione Bruno Kessler, Italy)
José Villañón (UCLM, Spain)
Roberto Riggio (Fondazione Bruno Kessler, Italy)
Antonio Garrido (University of Castilla-La Mancha, Spain)

Traffic Aware Beamformer Design for Integrated Access and Backhaul with Flexible TDD
Laddu Praneeth Roshan Jayasinghe, Antti Tölli, Jarkko Kaleva and Matti Latva-aho (University of Oulu, Finland)

Online Optimal Resource Allocation for SWIPT-Based Mobile Edge Computing Systems
Hamed Mirghasemi (Université Catholique de Louvain-la-Neuve, Belgium)
Luc Vandendorpe (Université Catholique de Louvain, Belgium)
Mateen Ashraf (University Catholique de Louvain, Louvain-la-Neuve, Belgium)

Thursday, 28 May 2020
16:00 - 17:30 • Room 09

T3-S29: Multi-Connectivity
Chair: Aimin Tang (Shanghai Jiao Tong University, China)

Design and Analysis for Dual Connectivity and Raptor Codes Assisted Handover in Vehicular Networks
Mingcheng He, Cunqing Hua and Pengwenlong Gu (Shanghai Jiao Tong University, China)

Mesh Architecture for Efficient Integrated Access and Backhaul Networking
Bangzhao Zhai, Mengxin Yu, Aimin Tang and Xudong Wang (Shanghai Jiao Tong University, China)

Evaluation of Multi-Connectivity Schemes for URLLC Traffic Over WiFi and LTE
Marie-Theres Suer (TU Braunschweig & Robert Bosch GmbH, Germany)
Christoph Thein and Hugues Tchouankem (Robert Bosch GmbH, Germany)
Lars C Wolf (Technische Universität Braunschweig, Germany)

Online Control of Traffic Split and Distributed Cell Group State Decisions for Multi-Connectivity
Sunghoon Jung and Saewoong Bahk (Seoul National University, South Korea)

Multi-Connectivity for Reliable Wireless Industrial Communications: Gains and Limitations
Ali Haider Mahdi (Technische Universität Dresden, Germany)
Tom Hößler (TU Dresden & Barkhausen Institut, Germany)
Norman Franchi and Gerhard P. Fettweis (Technische Universität Dresden, Germany)

Thursday, 28 May 2020
16:00 - 17:30 • Room 10

T4-S13: Hybrid Satellite Networks
Chair: Hyoil Kim (Ulsan National Institute of Science and Technology (UNIST), South Korea)

Content Delivery for High-Speed Railway via Integrated Terrestrial-Satellite Networks
Xinmu Wang, Hewu Li, Wenbing Yao, Tianming Lan and Qian Wu (Tsinghua University, China)

Switching Algorithm Based On Monte Carlo-Markov Decision Under Space-Air-Ground Integrated Network
Zhuoran Zhou, Ke Wang, Zhongliang Deng and Wenliang Lin (Beijing University of Posts and Telecommunications, China)
Yun Liu (The 54th Research Institute of China Electronics Technology Group Corporation, China)

How Capacity is Influenced by Ultra-Dense LEO Topology in Multi-Terminal Satellite Systems?
Ruqi Deng (Peking University, China)
Boya Di (Imperial College London, United Kingdom (Great Britain) & Peking University, China)
Lingyang Song (Peking University, China)

Patch Antenna Arrays Beam Steering for Enhanced LEO Nanosatellite Communications
Néstor J. Hernández Marcano and Hannes Bartle (Aarhus University, Denmark)
Rune Hylsberg Jacobsen (Aarhus University & Electrical and Computer Engineering, Denmark)
Collaborative Transmission in Hybrid Satellite-Terrestrial Networks: Design and Implementation
Yinan Jia and Jiaxin Zhang
(Beijing University of Posts and Telecommunications, China)
Peng Wang and Liangjingrong Liu
(Beijing University of Post and Telecommunications, China)
Xing Zhang and Wenbo Wang
(Beijing University of Posts and Telecommunications, China)

Underlay Cognitive Hybrid Satellite-Terrestrial Networks with Cooperative-NOMA
Vibhum Singh, Prabhat Kumar Upadhyay and Vinay Bankey (Indian Institute of Technology Indore, India)

Thursday, 28 May 2020
16:00 - 17:30 • Room 11

T4-S14: mmWave and Optical Wireless
Chair: Hoon Lee (Pukyong National University, South Korea)

Performance Evaluation of Spectrum Sharing in mmWave Cellular Networks Using Ray-Tracing
Constantinos Vrontos
(University of Bristol, United Kingdom (Great Britain))
Federico Boccardi (Ofcom, United Kingdom (Great Britain))
Simon Armour and Evangelos Mellios
(University of Bristol, United Kingdom (Great Britain))
Joe Butler (Ofcom, United Kingdom (Great Britain))

Studies of Flatness of LiFi Channel for IEEE 802.11bb
Ardimas Andi Purwita
(University of Edinburgh, United Kingdom (Great Britain))
Harald Haas
(The University of Edinburgh, United Kingdom (Great Britain))

IQ-WDM for IEEE 802.11bb-Based LiFi
Ardimas Andi Purwita
(University of Edinburgh, United Kingdom (Great Britain))
Harald Haas
(The University of Edinburgh, United Kingdom (Great Britain))

A Novel E-Band Testbed for Polarization MIMO-OFDM Systems with Wideband IQ Imbalance Compensation
Daisuke Uchida, Tamio Kawaguchi, Daiki Yoda and Makoto Sano (Toshiba Corporation, Japan)
Koji Akita (Toshiba Corp, Japan)
Magnus Sandell
(Toshiba TRL, United Kingdom (Great Britain))
Evgeny Tsimbalo
(Telecommunications Research Laboratory of Toshiba Research Europe Ltd., United Kingdom (Great Britain));
Seifallah Jardak (Toshiba Research Europe Limited, United Kingdom (Great Britain))
Ichiro Seto (Toshiba corporation, Japan)

SoftFG: A Dynamic Load Balancer for Soft Reconfiguration of Wireless Data Centers
Amer AlGhadhban (KAUST, Saudi Arabia)
Abdulkadir Celik (King Abdullah University of Science & Technology, Saudi Arabia)
Basem Shihada (KAUST, Saudi Arabia)
Mohamed-Slim Alouini (King Abdullah University of Science and Technology (KAUST), Saudi Arabia)
HALF DAY WORKSHOPS

HWS1: 5G and Beyond Technology-enabled Remote Health Systems (5G Remote Health)
Monday, 25 May 2020 • 09:00 - 12:15 • Room 06
Workshop Organizer and Session Chair: Di Zhang (Zhengzhou University, China)

High-quality hospitals and health resources are mostly in big cities. Villages and remote areas are lack of such medical institutions and resources. Rapid siphon effect of big city makes the remote area’s health conditions even worse. Technology development is to make the social process and human life more convenient, but not to distinguish its people according to their living places or any other characters. In order to alleviate the difference, health services with a purpose of providing people of remote areas with high-quality health services, are thus of great significance, such as the 5G and beyond technology-enabled remote health systems (5G remote health). In literature, 5G remote health enables the doctor in big cities to remotely diagnose and treat their patients via reliable high speed and low latency 5G wireless connections. Patients living in remote areas thus can share the high-quality medical resources without actually moving or traveling to big cities. On the other hand, 5G remote health can play an important role for the rescue and relief work while encountering some emergency conditions or disasters. 5G remote health can also improve the service quality of in-hospital tasks, e.g., 5G remote health can relief the frequent ward rounds.

Currently, studies on 5G remote health are still limited, and the existing technologies are still not enough for the implementation of 5G remote health. For instance, according to our test, only about 7ms latency is achieved by the current 5G networks, which is almost non-applicable for some remote health applications with ultra-reliable low latency communications (URLLC) requirements such as remote surgery. Additionally, the health information protection and the secured transmission are also important issues for the 5G remote health. Some legislations and ethics issues from the government are also required. Currently, less attentions or endeavors have been put on these topics.

The 5G and Beyond Technology-enabled Remote Health Systems (5G Remote Health) workshop is co-organized by Zhengzhou University, China, Federal University of Piauí (UFPI), Brazil, Instituto de Telecomunicações, Portugal, National Telemedicine Center and National Engineering Laboratory for Internet Medical Systems and Applications, China, and the University of Tokyo, Japan.

9:00 AM — 10:30 AM: 5G and Beyond Technology-Enabled Remote Health Systems I
Keynote: How 5G Will Affect Healthcare?
Haesik Kim (VTT Research Center, Finland)

Random Access Preamble Design and Detection for 5G Remote Health via Satellite Communications
Teng Sun (Xī’ān University of Posts & Telecommunications, China)
Li Zhen (Xī’ān University of Posts and Telecommunications, China)
Guangyue Lu (Xī’ān University of Posts & Telecommunications, China)
Keping Yu (Waseda University, Japan)

Modulation Division Based User Grouping Transmission in Massive SIMO Systems
Linxin Zhang, Jingjie Zong, Gangtao Han, Shuangzhi Li and Xiaomin Mu (Zhengzhou University, China)

10:45 AM — 12:15 PM: 5G and Beyond Technology-Enabled Remote Health Systems II
Prioritizing Health Care Data Traffic in a Congested IoT Cloud Network
Sara Beitzelspacher, Kedir Mamo Besher, Mohammed Zamshed Ali and Mohammad Mubashir (University of Texas at Dallas, USA)

Uplink Pilot Power Allocation for MA-MIMO-HetNet Remote Health Systems
Yabo Guo and Zhengyu Zhu (Zhengzhou University, China)
Xinhua Lu (Zhengzhou University & Institute of Nanyang Technology, China)
Zhongyong Wang and Wanning Hao (Zhengzhou University, China)
Ali Kashif Bashir (Manchester Metropolitan University, United Kingdom (Great Britain))

Glioma Segmentation Strategies in 5G Teleradiology
Xiangchuan Gao, Lei Ma and Jin Jin (Zhengzhou University, China)
Junmin Li (The First Affiliated Hospital of Zhengzhou University, China)
Yunkai Zhai (Zhengzhou University, China)
Xingwang Li (Henan Polytechnic University, China)

Multi-Channel Lightweight Convolutional Neural Network for Remote Myocardial Infarction Monitoring
Yangjie Cao, Tingting Wei and Nan Lin (Zhengzhou University, China)
Di Zhang (Zhengzhou University, China)
Joel J. P. C. Rodrigues (Federal University of Piauí (UFPI), Brazil & Instituto de Telecomunicações, Portugal)
In the last decade or so, the use of Unmanned Aerial Vehicles (UAVs), also commonly referred to as drones, has received significant attention from various industry sectors and research communities. This is mostly attributed to the broad range of UAV-enabled use cases in agriculture, public protection and disaster relief (PPDR), logistics, media production, mapping, and so on. The transformation of UAVs into distributed aerial communications and computing platforms is gathering pace by leveraging research advancements in 5G/6G technologies, edge computing, machine learning, and so on. This transformation promises exciting and high impact use cases and innovations far beyond legacy UAV solutions. The transformation further requires efficient integration of unmanned aerial systems traffic management (UTM) with more conventional air traffic management for an orderly air space with when UAVs are adopted in large numbers. The AERCOMM workshop collocated with IEEE WCNC 2020 aims to provide a venue for exchanging of latest developments between (but not limited to) academic researchers, vendors, operators, verticals and regulators.

14:00 – 15:20: Session 1 - Invited Speakers (Part 1)

Challenges and Benefits of 5G in Urban Air Mobility (Air Taxis and Logistics)
Gokul Srinivasan (Robots.expert, Finland)

Maria Massaouti (National Technical University of Athens, Greece)

15:20 - 16:30: Session 2 - Aerial Communications in 5G and Beyond Networks

Time-Weighted Coverage of Integrated Aerial and Ground Networks for Post-Disaster Communications
Xiaoli Xu and Yong Zeng (Southeast University, China)

Joint Trajectory Optimization and Time Slot Allocation for Buffer-Aided UAV Mobile Relaying
Yili Liu, Ning Wang, Lingfeng Shen, Zhengyu Zhu and Xiaomin Mu (Zhengzhou University, China)

Robust AN-Aided Secure Beamforming Design for A2G Communication Networks with UAV Jitter
Yang Wen, Huici Wu, Hanjie Li and Xiaofeng Tao (Beijing University of Posts and Telecommunications, China)

16:00 – 17:20: Session 3 - Invited Speakers (Part 2)

A Public Safety Framework for Immersive Aerial Monitoring through 5G Commercial Network
Sejin Seo, Seunghwan Kim and Seong-Lyun Kim (Yonsei University, South Korea)

Energy-Efficient UAV Communications with Interference Management: Deep Learning Framework
Fayezeh Ghavimi (Aalto University School of Electrical Engineering, Finland)
Riku Jäntti (Aalto University, Finland)

17:20 - 18:00: Session 4 - Panel Discussion

Keynote: Intelligent Sensing in the IoT Using Data-Aided Sensing
Jinho Choi (Deakin University, Australia)
NFV in the Air
Fabrizio Granelli (University of Trento, Italy)
Full Duplex Radio (FDR) is a duplexing scheme that allows a communication device to simultaneously transmit and receive wireless signals on the same channel (frequency band). Enabled by means of self-interference methodology, FDR can significantly increase the throughput for each allocated channel and furthermore improve the total system capacity. The inherent capability of FDR also can provide a minimized transmit buffer awaiting time for data transmission and an opportunity to reduce data transmission associated round-trip latency, which is due to transmission of acknowledgment or feedback information. These benefits from FDR application potentially enhances link performance for in-band and out-of-band relaying and device-to-device links as well as base station – mobile terminal links.

In 3GPP, some Study Item (SI) proposals are submitted for Release 17 standardization. Also the benefits and challenges of applying Full Duplex to Wi-Fi standards have recently begun discussion in IEEE802.11. In academia, Full Duplex Emerging Technology Initiative (ETI) in IEEE ComSoc and several international workshops that discusses on the feasibility of applying FDR for next generation cellular networks are recently organized. FDR will be a key technology that will shape the future wireless communication.

The obvious interest shown through the participation in the standardization and international workshops, as well as the ongoing research, demo and implementation of prototypes indicates that FDR will have a significant presence in future wireless communications.

14:00 – 15:30: Keynote Session

Keynote #1: Industrial R&D Trends for Full Duplex Radio Technologies
Jaehoon Chung (LG Electronics, South Korea)

Keynote #2: Full Duplex Radios: An Idea Whose Time Has Come to Reality
Chanbyoung Chae (Yonsei University, Korea)

Keynote #3: Potential and Challenges of Full Duplex Communication
Wilhelm Keusgen (Fraunhofer Heinrich Hertz Institute, Germany)

15:45 – 17:15: Full Duplex Radio Technologies

Demonstration of Self-Interference Antenna Suppression and RF Cancellation for Full Duplex MIMO Comm
Donghyun Lee and Byung-Wook Min
(Yonsei University, South Korea)

Time Dispersion Parameters of Indoor Self-Interference Radio Channels in Sub-7-GHz Bands
Ramez Askar, Mehmood Mazhar Sarmadi, Fabian Undi and Michael Peter (Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Germany)
Wilhelm Keusgen (Fraunhofer Heinrich Hertz Institute, Germany)
Thomas Haustein (Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, Germany)

Analysis of Spectral Efficiency in Hybrid Networks with Full Duplex Base Stations and TDD Users
Tong Li (University of Electronic Science and Technology of China, China)
Shanghai Xiao (University of Electronic Science and Technology of China & Chengdu Technological University, China)
Shihai Shao (University of Electronic Science and Technology of China, China)
Bin Yu (Samsung Electronics, China)
Chengjun Sun (Beijing Samsung Telecom R & D Center, China)

On the Cross Link Interference of 5G with Flexible Duplex and Full Duplex
Ziheng Guo (Huawei Technologies Co. LTD, China)
Yongqiang Fei (Huawei Technology, China)

Doubling Spectral Efficiency Independent of Cell Sizes in 5G Using Hybrid IBFD Cellular Network
Parthiban Annamalai (Intel, India)
Jyotsna Bapat (International Institute of Information Technology, India)
Debabrata Das (International Institute of Information Technology - Bangalore, India)

Keynote: Introduction of Future Standardization Approach
Jaehoon Chung (LG Electronics, Korea)
Over the last years, wireless communication networks have faced ever-increasing traffic demands beyond the available capacity, a problem that is expected to worsen in the foreseeable future with the requirement for high data-rate, enhanced Mobile Broadband (eMBB) services and the advent of a myriad of machine-type devices interconnected through the Internet of Things (IoT) for massive Machine Type Communications (mMTC). In order to cope with the forecasted traffic loads, an essential requirement for future wireless communication systems is efficient, flexible and dynamic spectrum utilization. Smart spectrum exploitation techniques have been developed for WRANs in TV white spaces, LTE-LAA mobile networks in ISM bands, CBRS radar systems, and cognitive satellite communications, to mention just a few examples. Spectrum sharing and on-demand spectrum assignment are very hot topics for innovative and sustainable future wireless world and continues to be an active field of research in the academic and industrial communities as well as in spectrum regulation.

The 6th edition of the IEEE WCNC International Workshop on Smart Spectrum (IWSS 2020) aims to bring together academic researchers and industry practitioners as well as members of standardization bodies and government to meet and exchange ideas on research about smart spectrum for This workshop aims to stimulate discussion and generation of innovative ideas for smart spectrum exploitation.

HWS10: Smart Spectrum
Monday, 25 May 2020 • 14:00 - 17:15 • Room 07
Workshop Organizer: Takeo Fujii (University of Electro-Communications, Japan)
Session Chairs: Kenta Umebayashi (Tokyo University of Agriculture and Technology, Japan)
Miguel López-Benítez (University of Liverpool, United Kingdom (Great Britain))

Over the last years, wireless communication networks have faced ever-increasing traffic demands beyond the available capacity, a problem that is expected to worsen in the foreseeable future with the requirement for high data-rate, enhanced Mobile Broadband (eMBB) services and the advent of a myriad of machine-type devices interconnected through the Internet of Things (IoT) for massive Machine Type Communications (mMTC). In order to cope with the forecasted traffic loads, an essential requirement for future wireless communication systems is efficient, flexible and dynamic spectrum utilization. Smart spectrum exploitation techniques have been developed for WRANs in TV white spaces, LTE-LAA mobile networks in ISM bands, CBRS radar systems, and cognitive satellite communications, to mention just a few examples. Spectrum sharing and on-demand spectrum assignment are very hot topics for innovative and sustainable future wireless world and continues to be an active field of research in the academic and industrial communities as well as in spectrum regulation.

The 6th edition of the IEEE WCNC International Workshop on Smart Spectrum (IWSS 2020) aims to bring together academic researchers and industry practitioners as well as members of standardization bodies and government to meet and exchange ideas on research about smart spectrum exploitation. This workshop aims to stimulate discussion and generation of innovative ideas for smart spectrum exploitation.

2:00 PM — 2:10 PM: Opening Session
2:10 PM - 2:50 PM: Keynote
Computing & Communication Tradeoff in 5G and Beyond
Seong-Lyun Kim (Yonsei University, South Korea)
2:50 PM - 3:30 PM: Smart Spectrum 1
Direct Beamformer Estimation for Hybrid Architecture in mmWave Dynamic TDD System
Prashant Kumar Shah, Krishna Joshi, Satya Krishna Joshi and Antti Tölli (University of Oulu, Finland)
Kenta Umebayashi (Tokyo University of Agriculture and Technology, Japan)
3:45 PM — 5:15 PM: Smart Spectrum 2
Sample Size Analysis of Energy Detection Under Fading Channels
Miguel López-Benítez and Ogeen Toma (University of Liverpool, United Kingdom (Great Britain))
Dhaval Karshanbhai Patel (School of Engineering and Applied Science-Ahmedabad University, India)
Kenta Umebayashi (Tokyo University of Agriculture and Technology, Japan)
A Study on High-Efficiency Energy Detection-Based Spectrum Measurements
Hiroki Iwata, Kenta Umebayashi and Ahmed Al-Tahmeesschi (Tokyo University of Agriculture and Technology, Japan)
Satya Krishna Joshi (University of Oulu, Finland)
Miguel López-Benítez (University of Liverpool, United Kingdom (Great Britain))
Janne Lehtomäki (University of Oulu, Finland)

IEEE WCNC 2020
FWS3: Emerging Terahertz Technologies for Future Wireless Systems

Monday, 25 May 2020 • 09:00 - 17:15 • Room 08

Session Chairs: Juho Lee (Samsung Electronics. Co., Ltd, South Korea)
Session Organizer: Juho Lee (Samsung Electronics. Co., Ltd, South Korea)
Byonghy Shim (Seoul National University, South Korea)

With the start of commercial deployments of 5G communication systems, many people are wondering what is going to happen with 5G and whether 5G will be able to create meaningful business impacts. Those include the provisioning of new media experiences such as augmented reality (AR) and virtual reality (VR) over mobile networks, the support of new vertical services such as connected vehicles and smart factories, etc. While the mobile industry is mainly focusing on the realization of 5G technologies, we can see that initial consideration about the next generation of mobile communication beyond 5G, i.e., 6G, is already happening. Considering the general trend of introducing new services with higher requirements over different generations of communication systems, 6G would need to support much higher data rate and much lower latency than 5G. While more studies are needed to define proper requirements for 6G, initial investigation already suggests rough estimates such as 1 Tbps peak rate, 10 Gbps user-experienced data rate, and 0.1 ms air latency.

Use of terahertz (THz) spectrum, i.e., from 100 GHz to 3,000 GHz, is getting much attention as a way to provide the data rate of up to 1 Tbps. For example, in March 2019, Federal Communications Commission (FCC) opened the spectrum between 95 GHz and 3,000 GHz for experimental use and unlicensed applications to encourage the development of new wireless communication technologies. Moreover, 5G New Radio (NR) standard developed by 3rd generation partnership project (3GPP) is expected to be extended for application for bands between 52.6 GHz and 114.25 GHz.

There are several hurdles that need to be overcome in order to utilize terahertz spectrum: severe path loss, atmospheric absorption, inefficiency of radio frequency (RF) devices such as power amplifier, switch, and mixer, and development of efficient high-speed analog-to-digital converters (ADCs). With this workshop, we aim to bring together leading researchers of the field, both from academia and industry, to share their recent findings and views on technical challenges in utilizing terahertz spectrum. In addition, the workshop will also address terahertz channel modeling as well as key technologies such as waveform, MIMO, channel coding, modulation, multiple access scheme etc. that are essential to develop efficient communication systems for terahertz spectrum. Challenges and key technologies for extending 5G NR standard to the higher frequency spectrum can also be discussed.

9:00 - 10:30: Session 1 - Keynotes and Industry Activity

100-300GHz Wireless: Applications, Systems, ICs, and Transistors
Mark Rodwell (University of California, Santa Barbara, USA)

Channel Measurements and Modeling for 0.1-0.5 THz
Andy Molisch (University of Southern California, USA)

Design Considerations for Terahertz Wireless Communication Systems
Jeongho Jeon, Khurrum Muhammad, Joonyoung Cho and Gary Xu (Samsung Research America, USA)
Ilju Na (Samsung Electronics, South Korea)
Jianzhong Zhang (Samsung, USA)

From sub-Terahertz to Terahertz: Challenges & Design Considerations
Daewoo Lee (Intel Corporation, USA)
Alexei Davydov (Intel Corp., Russia)
Bishwarup Mondal (Intel, USA)
Gang Xiong (Intel Corporation, USA)
Gregory Morozov (Intel Corp., Russia)
Jiwoo Kim (Intel Corporation, USA)

10:45 - 12:15: Session 2 - Measurements, RFIC, and Optical Methods

Measurement of Directionally Resolved Radar Cross Section of Human Body for 140 and 220 GHz Bands
Naveed Ahmed Abbasi and Andreas Molisch (University of Southern California, USA)
Charlie Zhang (Samsung Telecommunications America, USA)

LOS Channel Response Measurement at 300-GHz for Short-Range Wireless Communication
Ho-Jin Song (POSTECH, South Korea)

A 140GHz Two-Channel CMOS Transmitter Using Low-Cost Packaging Technologies
Arda Simsek (University of California Santa Barbara, USA)
Ahmed S. H. Ahmed (UCSB, USA)
Ali A Farid (University of California, Santa Barbara, USA)
Utku Solyu (UCSB, USA)
Mark J W Rodwell (University of California, Santa Barbara, USA)

Providing 5G Coverage Using Optical Methods for Terahertz Frequencies
Suresh Singh (Portland State University, USA)

14:00 - 15:30: Session 3 - Metasurface, Lens, and OAM

Polarization Dependent Beam Steerable Thin Lens Employing Spatial Filter Arrays
Yeong Myeong Park (Seoul National University, South Korea)
Inseop Yoon (Samsung Electronics, South Korea)
Jungsuek Oh (Seoul National University, South Korea)

Metasurface-Enhanced Antenna System for Terahertz Band Wireless Communications
Jaehyun Lee (Samsung Research & Samsung Electronics, South Korea)
Hyojin Lee (Samsung Research, South Korea)

Rotman Lens-Fed Antenna for Generating Multiple Orbital Angular Momentum Modes
Zhiya Zhang (Xidian University, China)
Bin Yu (Samsung Electronics, China)
Dan Wu, Yongyan Mao and Chengbin Zhang (Xidian University, China)

Orbital Angular Momentum Multiplexing for a Wireless Backhaul Communication System
EunMi Choi (UNIST, South Korea)

15:45 - 17:15: Session 4 - Channel Sounder, Antenna Array, and MIMO

THz Channel Sounding: Design and Validation of a High Performance Channel Sounder at 300 GHz
Mathis Schmieder and Wilhelm Keusgen (Fraunhofer Heinrich Hertz Institute, Germany)
Michael Peter (Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Germany)
Sven Wittig (Fraunhofer Heinrich Hertz Institute, Germany)
Thomas Merkle, Sandrine Wagner and Michael Kuri (Fraunhofer IAF, Germany)
Taro Eichler (Rohde & Schwarz, Germany)
Monday, 25 May 2020 • 09:00 - 17:15 • Room 08 (Continued)

Nanoantenna Array Design on Grounded Dielectric Substrate for High Field Enhancement and Absorption
Sangjo Choi (University of Ulsan, South Korea)
Mohamad Khoirul Anam (University of Ulsan & Indonesian Institute of Sciences (LIPI), South Korea)

Taylor Expansion Aided Gradient Descent Schemes for IRS-Enabled Terahertz MIMO Systems
Zhi Chen (University of Electronic Science and Technology of China, China)
Wenjie Chen
(University Of Electronic Science and Technology Of China, China)
Xinying Ma, Zhuxun Li and Yaojia Chi
(University of Electronic Science and Technology of China, China)
Chong Han (Shanghai Jiao Tong University, China)

An Energy-Efficient Hybrid Precoding Based on MPBIL Algorithm for mmWave Massive MIMO Systems
Yang Liu (Institute of Electronic Information Engineering, Inner Mongolia University, China)
Lina Hou and Lei Liu (Inner Mongolia University, China)
Yinghui Zhang (Institute of Electronic Information Engineering, Inner Mongolia University, China)
Minglu Jin (Dalian University of Technology, China)

Monday, 25 May 2020 • 10:45 - 17:15 • Room 09
Workshop Organizers: Emilio Calvanese Strinati (CEA, France) and Ilgyu Kim (ETRI, South Korea)
Chair: Ilgyu Kim (ETRI of KOREA, South Korea)

Governments and policy makers have recognised the economic and societal importance of future digital services. Forecasts predict that the huge increase in consumer demand for data services driven by access to ever smarter and powerful devices is expected to continue beyond 2020. Accordingly, many academic, industrial and policy initiatives have been working on the development of 5G mobile networks and the capabilities they will require to meet the future demands e.g. higher data rates, widespread connectivity, flexible service creation and low latency. 5G will be the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual reality (VR) / augmented reality (AR), Machine-to-Machine (M2M) / Internet of Things (IoT), automotive, Smart City etc.

Current research efforts on 5G Radio Access Networks (RAN) strongly focus on millimeter-wave (mmWave) access for addressing a critical weakness of deployed cellular systems, i.e. the capacity to realize enhanced mobile broadband (eMBB) services, as discussed at the World Radio-communication Conference 2015 (WRC-2015). Forseeing a new market, the FCC in US also opened up in total nearly 11 GHz of spectrum above 27.5 GHz to 5G, including unlicensed spectrum at 64-71 GHz. Aside, mmWave technologies have reached a significant degree of maturity and their state-of-the-art products, operated in the 60GHz unlicensed band, are already in the market. Wireless engineers and business planners now consider how to efficiently introduce and operate mmWave in 5G and beyond, where the answers to the question depend on scenarios/use cases/services to be deployed. For example, the forthcoming 5G Phase II, taken care by the planned 3GPP Release 16, is particularly interested to a new class of services called ultra-High Speed Low Latency Communications (uHSLLC) e.g. mmWave V2X. To realize such requirements, it is essential to combine mmWave with Mobile Edge Computing (MEC), a technology allocating Phase II, taken care by the planned 3GPP Release 16, is particularly interested to a new class of services called ultra-High Speed Low Latency Communications (uHSLLC) e.g. mmWave V2X. To realize such requirements, it is essential to combine mmWave with Mobile Edge Computing (MEC), a technology allocating

10:45 – 12:15: Session 1 - Access and Core Technologies: Part I

Network Selection in 5G Networks Based on Markov Games and Friend-or-Foe Reinforcement Learning
Alessandro Giuseppi (University of Rome Sapienza, Italy)
Emanuele De Santis (University of Rome “La Sapienza”, Italy)
Francesco Delli Priscoli (University of Rome, “La Sapienza”, Italy)
Seok Ho Won (ETRI, South Korea)
Taesung Choi
(Electronic and Telecommunications Research Institute, South Korea)
Antonio Pietrabissa (Universita di Roma La Sapienza, Italy)

Probabilistic Shaping in Faster-Than-Nyquist System
Weimin Kang (Beijing University of Posts and Telecommunications, China)
Zhanji Wu (BUPT, China)

Design of Protagraph-Based Quasi-Cyclic Spatially Coupled LDPC Codes
Shuoshuo Wang (Beijing University of Posts & Telecommunications, China)
Zhanji Wu (BUPT, China)

14:00 – 15:30: Session 2 - Access and Core Technologies: Part II

Two-Stage Hybrid Beamforming Design for MmWave Multi-User Massive MIMO Systems
Ran Zhang and Weixia Zou (BUPT, China)
Ye Wang and Ming Yang Cui
(Beijing University of Posts and Telecommunications, China)

Satellite and Terrestrial Multi-connectivity for 5G: Making Spectrum Sharing Possible
Nicolas Cassiau (CEA-Leti Minatec Campus, France)
Gosan Noh
(Electronics and Telecommunications Research Institute, South Korea)
Stephan Jaeckel (Stephan Jaeckel Consulting, Germany)
Leszek Raschkowski (Fraunhofer Heinrich Hertz Institute, Germany)
Jean-Michel Houssin, Laurent Combelles and Marjorie Thary
(Thales Alenia Space, France)
Junhyeong Kim (ETRI, South Korea)
Jean-Baptiste Doré (CEA, France)
Marc Lagueois (CEA-LETI, France)

IEEE WCNC 2020

WCNC20-Final-Program_v6_5Jul20_JB.indd 53
6/5/20 9:50 PM
WORKSHOPS

Monday, 25 May 2020 • 10:45 - 17:15 • Room 09 (Continued)

mmWave Massive Analog Relay MIMO for Improvement of Channel Capacity
Yuichiro Sugihara (Tokyo Institute of Technology, Japan)
Kei Sakaguchi (Tokyo Institute of Technology & Fraunhofer HHI, Japan)

15:45 – 17:15: Session 3 - Architecture, Business Model and Services
Technology Antecedents of the Platform-Based Ecosystemic Business Models Beyond 5G
Seppo Yrjölä (Nokia & University of Oulu, Finland)

Key Technologies for the Advent of the 5G
Jose F Monserrat (Universitat Politècnica de València, Spain)
David Martín-Sacristán (ITEAM Research Institute, Universitat Politècnica de València, Spain)
Josue Flores de Valgas (Universitat Politècnica de València, Spain)
Narcis Cardona (The Polytechnic University of Valencia, Spain)
Faiza Bouchmal and Oscar Carrasco (Casa Systems, Spain)

FWS6: 3rd Workshop on Intelligent Computing and Caching at the Network Edge
Monday, 25 May 2020 • 09:00 - 17:15 • Room 10
Chairs: Sheng Zhou (Tsinghua University, China)
Zhuyuan Jiang (Shanghai University, China)
Zheng Chang (University of Jyväskylä, Finland)
Jie Gong (Sun Yat-sen University, China)

9:00 – 10:30: Session 1 - Caching in Heterogeneous Wireless Network
Keynote: Scheduling of Multiple Tasks among Multiple Helpers in Fog/Edge Network
Yang Yang (ShanghaiTech University, China)

Wind-Aware Content Caching for Smart Farm
Seng-Kyoun Jo (ETRI, South Korea)
Max Muehlhaeuser (Technical University Darmstadt, Germany)
Se-han Kim (Electronics and Telecommunications Research Institute (ETRI), South Korea)

Joint Power and Channel Allocation Based on Mobility and Interest Aware D2D Cache in HetNets
Xinpeng Lyu, Ying Wang, Zhengdong Li and Man Liu
(Shanghai University of Posts and Telecommunications, China)

Utility Maximization for Cache-Aided Ultra-Dense Relay Networks: A Matching Perspective
Yuqin Liu and Feng Ke (South China University of Technology, China)
Hui Song (South China Normal University, China)

10:45 – 12:15: Session 2 - Coded Caching at Network Edge
Optimized Coded Prefetching Scheme in Hierarchical Cache-Enabled Networks
Yan Tan (Harbin Institute of Technology (Shenzhen), China)
Ye Wang (Harbin Institute of Technology (Shenzhen), China)
Shushi Gu (Harbin Institute of Technology, Shenzhen, China)
Xianfan Sun (Harbin Institute of Technology(shenzhen), China)
Qinyu Zhang (Shenzhen Graduate School, Harbin Institute of Technology, China)
Wei Xiang (James Cook University, Australia)

Online Caching and Coding at the WiFi Edge: Gains and Tradeoffs
Lalhruaizela Chhangte (IITB-Monash Research Academy, India)
Emanuele Viterbo (Monash University, Australia)
D. Manjunath (IIT Bombay, India)
Nikhil Karamchandani (Indian Institute of Technology Bombay, India)

Coded Caching with Heterogeneous User Groups
Jingliang He (Sun Yat-sen University, China)
Congdun Li (Sun Yat-sen University, China)
Linqi Song (City University of Hong Kong, Hong Kong)

User Movements Aware Coded Caching in Small-Cell Networks
Guangyu Zhu, Calli Guo and Tiankui Zhang
(Beijing University of Posts and Telecommunications, China)
Qianqian Yang (Imperial College London, United Kingdom (Great Britain))

14:00 – 15:30: - Session 3 Intelligent Edge Computing
Keynote: Big Data Analysis and Cross-Layer Optimization for Communications, Caching and Computing Networks
Zhu Han (Houston University, USA)

Mobility-Aware Cooperative Task Offloading and Resource Allocation in Vehicular Edge Computing
Yifan Zhang, Xiaoqi Qin and Xianxin Song
(Beijing University of Posts and Telecommunications, China)

Joint User Association and Value-Aware Computation Offloading for MEC-Enabled Networks
Huiwen Zhang and Wenchao Jing
(Beijing University of Posts and Telecommunications, China)
Zhaoming Lu (BUPT, China)
Xiaoming Wen and Jingyi Zhang
(Beijing University of Posts and Telecommunications, China)

Intelligent Deployment of Dedicated Servers: Rebalancing the Computing Resource in IoT
Yiwen Wu
(University of Electronic Science and Technology of China, Chengdu, China)
Yilin Wang, Yunkai Wei and Supeng Leng
(University of Electronic Science and Technology of China, China)

IEEE WCNC 2020
WORKSHOPS

Monday, 25 May 2020 • 09:00 - 17:15 • Room 10 (Continued)

15:45 – 17:15: Session 4 - Enabling the Network Edge Intelligence

Tag Selection for Backscatter Communication in Classified Wireless Body Area Networks
Zhuang Ling and Fengye Hu (Jilin University, China)
Li Dong (Macau University of Science and Technology, Macao)
Zhu Han (University of Houston, USA)

VNF Placement and Resource Allocation in SDN/NFV-Enabled MEC Networks
Nahida Kiran, Xuanlin Liu, Sihua Wang and Changchuan Yin (Beijing University of Posts and Telecommunications, China)

Analysis of Group Distribution and Content Concentration for Packet Allocation in D2D Communication
Kuan Wu, Lei Zhao, Ming Jiang and Xiaojing Huang (Sun Yat-sen University, China)

End-to-End Delay Analysis in mmWave UAV-Assisted Wireless Caching Networks
Kai-Min Liao, Guan-Yi Chen, Yu-Jia Chen and Yung-Fang Chen (National Central University, Taiwan)

FWS7: Intelligent IoT Connectivity, Automation and Applications (ICA)
Monday, 25 May 2020 • 13:00 - 17:15 • Room 11

Workshop Organizers: Jinho Choi, (Deakin University, Australia)
Arkady Zaslavsky (Deakin University, Australia)
Seong-Lyun Kim, Yong-Sei University, Korea (South))
Sung Hwan Won (Nokia Bell Labs)

TPC Chair: Jihong Park (University of Oulu, Finland)
Session Chair: Jihong Park (Deakin University, Australia)

There have been extensive efforts to realize the idea of the Internet of Things (IoT) as the IoT has a huge impact on a number of applications ranging from environmental monitoring to factory automation to smart cities, and fosters new business growth. In general, for successful IoT applications, efficient connectivity technologies are required, and in LTE-A and 5G, machine-type communication (MTC) and ultra-reliable low-latency communication (URLLC) have been considered to support various IoT applications. In the meantime, there have been a number of distributed machine learning algorithms that can be employed for intelligent IoT applications with mobile nodes that collect local data sets for learning (e.g., federated learning). While IoT connectivity technologies and applications can be considered separately, they can be efficiently integrated for efficient use of limited radio spectrum that is to be shared by a large number of devices. To this end, various intelligent approaches are required for both IoT connectivity, automation and applications.

13:00 - 13:55: Session 1 - Keynote Presentation

Intelligent IoT Connectivity, Automation and Applications in 5G and Beyond
Fumiyuki Adachi (Tohoku University)

14:00 - 15:30: Session 2 - Distributed Sensing and Localization

Energy-Balanced and Distributed Clustering Protocol for IoT Wireless Sensors
Bahaa Al-Musawi (Faculty of Engineering & University of Kufa, Iraq)
Mohammed Falih Hassan (University of Kufa, Iraq)
Shiva Raj Pokhrel (Deakin University & Nepal Telecom, Australia)

Coalition Game-Based Beamwidth Selection for D2D Users Underlying Ultra Dense mmWave Networks
Jinx Zhang, Gang Chua, Weidong Gao, Saidaard Maimaiti and Zhwei Si (Beijing University of Posts and Telecommunications, China)

Adaptive Beamforming Design for mmWave RIS-Aided Joint Localization and Communication
Jinguo He and Tachporn Sanguapun (University of Oulu, Finland)
Henk Wymeersch (Chalmers University of Technology, Sweden)
Olli Silven and Marcella Juntti (University of Oulu, Finland)

A Decentralized Federated Learning Approach for Connected Autonomous Vehicles
Shiva Raj Pokhrel (Deakin University & Nepal Telecom, Australia)
Jinho Choi (Deakin University, Australia)

Wireless Electrocardiograph Monitoring Based on Wavelet Convolutional Neural Network
Xucun Yan, Zhihua Lin and Peng Wang (University of Sydney, Australia)

LoRa Signal Monitoring System of Multi-Node Software Define Radio
Hailiang Zhao (Xidian University, China)

Analysis of Automotive Radar Interference Among Multiple Vehicles
Zixi Fang, Zhiqing Wei, Hao Ma, Xu Chen and Zhiyong Feng (Beijing University of Posts and Telecommunications, China)

Joint Optimization of Resource Allocation and Multi-UAV Trajectory in Space-Air-Ground IoT Networks
Man Liu, Ying Wang, Zhenhong Li, Xinpeng Lyu and Yuanbin Chen (Beijing University of Posts and Telecommunications, China)

Resource Allocation in Relay-Assisted Mission-Critical Industrial Internet of Things
Weichen Ning, Ying Wang, Yuanbin Chen and Man Liu (Beijing University of Posts and Telecommunications, China)

Access Control for Machine-Type Communication Assisted by D2D in Heterogeneous Networks
Qijun Han, Gang Feng, Shuang Qin and Qianyi Zhang (University of Electronic Science and Technology of China, China)

Joint Active Device and Data Detection for Massive MTC Relying on Spatial Modulation
Li Qiao and Zhen Gao (Beijing Institute of Technology, China)

Data-Aided Sensing Where Communication and Sensing Meet: An Introduction
Jinho Choi (Deakin University, Australia)
With the acceleration of 5G commercialization and 6G research picking up across the globe, various mobile operators and service providers are moving towards disaggregated and open reference architecture that utilizes open components with standard APIs from a multi-vendor ecosystem. By leveraging Software Defined Network (SDN) and Network Function Virtualization (NFV), mobile operators and service providers have successfully designed competitive and open core networks. RAN has evolved a lot with the advent of Virtual Radio Access Network (vRAN) and Cloud Radio Access Network (CRAN) but the proprietary implementation of these cost-effective options did not provide enough research opportunities. This lead to the emergence of Open RAN which considers building up of standard open interfaces that help mobile operators and service providers to avail Base Band Unit (BBU) and Remote Radio Unit (RRU) hardware from various vendors to deploy multi-vendor networks (multi-vendor interoperability). Additionally, Open RAN also aims at automating mobile networks and build intelligent SDN. It also makes network programmable and autonomous to cope up with the growth in ML, AI, automation and low latency applications. Open RAN helps in enabling the flexibility and robustness in advanced 5G and beyond networks with the use of a standard open interface, which are used to communicate with other network components as well which is a key for the inheritance of cloud-scale economies in RANs. While saving on CAPEX and Operating Expenses (OPEX), Open RAN also offers a space for creating a wide range of RAN applications that will make RAN open and intelligent than ever before. Besides standardization of open fronthaul, Open RAN has several more key open research areas, such as overall and use cases, RAN Intelligence Controller and applications, and virtualization and cloudification enhancements to name a few.

Thus, Open RAN can be perceived as power for unlocking advanced 5G and 6G networks by investing and researching on open networks and open standards to explore the interoperable multi-vendor business model. Open RAN brings in the opportunity to combine advancements in open mobile networks, spectrum availability, and intelligent network applications to stimulate rapid innovation in delivering profitable business for mobile network operators and service providers across the globe.
The evolution of radio access network towards Open-RAN: Challenges and opportunities
Sameer Kumar Singh, Rohit Singh and Brijesh Kumbhani
(IIT Ropar, India)

RAN resource slicing and sharing with NOma for latency reduction in uplink URLLC networks
Nadia Jaya and Md. Farhad Hossain (Bangladesh University of Engineering & Technology (BUET), Bangladesh)

Data-driven semi-supervised anomaly detection using real-world call data record
Shan Jaffry
(Dongguan University of technology & IEEE ComSoc, China)
Syed Faraz Hasan (Massey University, New Zealand)
Syed Tariq Shah (Sungkyunkwan University, South Korea & Balochistan University of Information Technology, Engineering, and Management Sciences, Pakistan)

ONAP based pro-active access discovery and selection for 5G networks
Rahul Banerji, Naman Gupta, Suman Kumar and Sukhdeep Singh (Samsung R&D India - Bangalore, India)
Seungil Yoon (Samsung Electronics, South Korea)
Avinash Bhat (Samsung R&D, India)
Bharat J.R. Sahu (ITER, Siksha ‘O’ Anusandhan University, India)
WORKSHOPS

Monday, 25 May 2020 • 09:00 - 17:15 • Room 13

Performance Evaluation of Ad-Hoc Routing Protocols in (FANETs)
Anas Alkhatieb (Umm Al-Qura University, Saudi Arabia)
Emad Felemen (Umm Al Qura University, Saudi Arabia)
Atif Naseer (Umm Al-Qura University, Saudi Arabia)

Joint Optimal Allocation of Wireless Resource and MEC
Computation Capability in Vehicular Network
Min Zhu, Yanzhao Hou, Xiaofeng Tao and Tengfei Sui
(Beijing University of Posts and Telecommunications, China)
Lei Gao (Beijing University of Posts & Telecommunications, China)

10:45 – 12:15: Session 2 - Future Networking Technologies

Minimizing Content-Store Data Access Time Using Two-Tier
Tree Architecture for NDN-Based WSNs
Muhammad Mudasir Qazi and Rana Asif Rehman
(National University of Computer and Emerging Sciences, Pakistan)
Byung-Soo Kim (Hongik University, South Korea)

Mitigating Interference and Energy Issues in Smart Homes
Using Internet of Things
Murad Khan (Kyungpook National University, Daegu, South Korea)
Muhammad Toaha Raza Khan and Dongkyun Kim
(Kyungpook National University, South Korea)

Network Function Placement for Service Chains with Server
Maintenance Cost
Zhuangyi Tan (Sun Yat-Sen University, China)
Jinbei Zhang (Sun Yat-sen university, China)

Multi-Band Multi-Hop WLANs for Disaster Relief and Public
Safety Applications
Asad Ali (BUITEMS, Pakistan)
Fatima Hussain (Royal Bank of Canada, Canada)
Rasheed Hussain
(Innopolis University & Networks and Blockchain Lab, Russia)
Adil Mehmood Khan (Innopolis University, Russia)
Alex Ferworn (Ryerson University, Canada)

14:00 - 15:30: Session 3 - Intelligent Communication
Technologies

Intelligent Reflecting Surface Assisted Wireless Powered
Communication Networks
Bin Lyu (Nanjing University of Posts & Telecommunications, China)
Hoang Thai Dinh (University of Technology Sydney (UTS), Australia)
Shimin Gong (Sun Yat-sen University, China)
Zhen Yang
(Nanjing University of Posts and Telecommunications, China)

NoViSec: Novel Virtual Network Mapping Framework for
Secure Software-Defined Networking
Haotong Cao
(Nanjing University of Posts and Telecommunications, China)
Yue Hu
(China Mobile Communications Group Jiangsu Co., Ltd., China)
Shengchen Wu
(Nanjing University of Posts and Telecommunications, China)
Jianbo Du (Xi’an University of Posts & Telecommunications, China)
Feng Tian
(Nanjing University of Posts and Telecommunications, China)
Gagangeet Singh Aujla
(Newcastle University, United Kingdom (Great Britain))
Longxiang Yang
(Nanjing University of Posts and Telecommunications, China)

15:45 - 17:15: Session 4 - Communication Techniques

Waveform Design of Low Complexity WR-OTFS System for the
OOB Power Reduction
Md. Najmul Hossain, Yosuke Sugura and Tetsuya Shimamura
(Saitama University, Japan)
Heung-Gyoon Ryu (Chungbuk National University, South Korea)

Joint Energy Beamforming and Optimization for Intelligent
Reflecting Surface Enhanced Communications
Yuze Zou (Huazhong University of Science and Technology, China)
Shimin Gong (Sun Yat-sen University, China)
Jing Xu (Huazhong University of Science and Technology, China)
Hoang Thai Dinh (University of Technology Sydney (UTS), Australia)
Dusit Niyato (Nanyang Technological University, Singapore)
Wenqing Cheng
(Huazhong University of Science and Technology, China)

Comprehensive Study on CC-LDPC, BC-LDPC and Polar Code
Kun Zhu (Beijing University of Posts & Telecommunications, China)
Zhanji Wu (BUPT, China)

Joint Admission Control and Association for the Downlink
of a mmWave Vehicular Network
Akila Anuradha Ekanayake (Nokia, Finland)
Kapuruhamy Badalge Shashika Manosha
(Centre for Wireless Communications, University of Oulu, Finland)
Nandana Rajatheva and Matti Latva-aho
(University of Oulu, Finland)
TUT01 - Federated Learning at the Network Edge: Fundamentals, Key Technologies, and Future Trends

Presenters:
Howard Yang (Singapore University of Technology and Design, Singapore)
Zhongyuan Zhao (Beijing University of Posts and Telecommunications, China)
Tony Q. S. Quek (Singapore University of Technology and Design, Singapore)

The burgeoning advances from machine learning and wireless technologies are forging a new paradigm for future networks, which are expected to possess higher degrees of intelligence via the inference from vast data set and being able to respond to local events in a prompt manner. Due to the sheer volume of data generated by the end devices, as well as the increasing concerns about sharing private information, a new branch of machine learning model, namely the federated learning, has emerged from the intersection of artificial intelligence and edge computing. In contrast to the conventional machine learning methods, federated learning brings the models directly to the device for training, where only the resultant parameters shall be sent to the edge servers. The local copies of the model on the devices bring along great advantages of eliminating the network latency and preserving data privacy. Nevertheless, to make federated learning possible, one needs to tackle new challenges that require a fundamental departure from the standard methods designed for distributed optimizations. In this tutorial, we deliver a comprehensive introduction of the federated learning. Specifically, we first survey the basis of federated learning, including its distinct features from conventional machine learning models, the fundamental theories that ensure the successful operation of federated learning, and the algorithms to avail an effective adoption. We then enumerate several critical issues associated with the deployment of federated learning in a wireless network, and show how technologies from different perspectives, ranging from algorithmic design, on-device training, to communication resource management, shall be jointly integrated to facilitate the full implementation. Finally, we conclude by shedding light on future works.

Biographies:

Howard H. Yang (S’13–M’17) received the B.Sc. degree in Communication Engineering from Harbin Institute of Technology (HIT), China, in 2012, and the M.Sc. degree in Electronic Engineering from Hong Kong University of Science and Technology (HKUST), Hong Kong, in 2013. He earned the Ph.D. degree in Electronic Engineering from Singapore University of Technology and Design (SUTD), Singapore, in 2017. From Aug. 2015 to Mar. 2016, he was a visiting student in the WNCG under supervisor of Prof. Jeffrey G. Andrews at the University of Texas at Austin. Dr. Yang is now a Postdoctoral Research Fellow with Singapore University of Technology and Design in the Wireless Networks and Decision Systems (WNDS) group led by Prof. Tony Q. S. Quek. He has held a visiting research appointment at Princeton University from September 2018 to April 2019. His research interests cover various aspects of wireless communications, networking, and signal processing, currently focusing on the modeling of modern wireless networks, high dimensional statistics, graph signal processing, and machine learning. He received the IEEE WCSP Best Paper Award in 2014 and the IEEE WCSP 10-Year Anniversary Excellent Paper Award in 2019.

Zhongyuan Zhao (M’14) received the B.S. degree in applied mathematics and the Ph.D. degree in communication and information systems from Beijing University of Posts and Telecommunications (BUPT), Beijing, China, in 2009 and 2014, respectively. He is currently an associate professor with BUPT. His research interests include fog computing/edge computing, content caching, and edge intelligence in wireless networks. Dr. Zhao serves as an editor of IEEE COMMUNICATIONS LETTERS (since 2016), and received Exemplary Editors Award twice (2017 and 2018). He was also a guest editor of IEEE ACCESS. He was the recipient of the Best Paper Awards at the IEEE CIT 2014 and WASA 2015.

Tony Q. S. Quek (S’98-M’08-SM’12-F’18) received the B.E. and M.E. degrees in electrical and electronics engineering from the Tokyo Institute of Technology, Tokyo, Japan, in 1998 and 2000, respectively, and the Ph.D. degree in electrical engineering and computer science from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2008. Currently, he is the Cheng Tsang Man Chair Professor with Singapore University of Technology and Design (SUTD). He also serves as the Acting Head of ISTD Pillar, Sector Lead of the SUTD AI Program, and the Deputy Director of the SUTD-ZJU IDEA. His current research topics include wireless communications and networking, network intelligence, internet-of-things, URLLC, and big data processing. Dr. Quek has been actively involved in organizing and chairing sessions, and has served as a member of the Technical Program Committee as well as symposium chairs in a number of international conferences. He is currently serving as an Editor for the IEEE Transactions on Wireless Communications, the Chair of IEEE VTS Technical Committee on Deep Learning for Wireless Communications as well as an elected member of the IEEE Signal Processing Society SPCOM Technical Committee. He was an Executive Editorial Committee Member for the IEEE Transactions on Wireless Communications, an Editor for the IEEE Transactions on Communications, and an Editor for the IEEE Wireless Communications Letters. Dr. Quek was honored with the 2008 Philip Yeo Prize for Outstanding Achievement in Research, the 2012 IEEE William R. Bennett Prize, the 2015 SUTD Outstanding Education Awards -- Excellence in Research, the 2016 IEEE Signal Processing Society Young Author Best Paper Award, the 2017 CTTC Early Achievement Award, the 2017 IEEE ComSoc AP Outstanding Paper Award, and the 2016-2019 Clarivate Analytics Highly Cited Researcher. He is a Distinguished Lecturer of the IEEE Communications Society and a Fellow of IEEE.
Monday, 25 May 2020
9:00 - 12:15 • Room 02

TUT02 - Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Networks

Presenters: Rui Zhang (National University of Singapore, Singapore)

In this tutorial, we introduce a new wireless communication paradigm by employing a massive number of low-cost passive reflecting elements with independently controllable amplitude and phase, named intelligent reflecting surface (IRS), which is able to smartly reconfigure the wireless signal propagation and realize 3D reflect beamforming for signal enhancement and/or interference suppression. We first present the signal and channel models of IRS by taking into account its hardware implementation constraints in practice. We then illustrate the main applications of IRS in achieving spectrum and energy efficient as well as secure and sustainable wireless networks, and highlight its cost and performance advantages as compared to other existing technologies such as small-cell network, massive MIMO, and active relaying. We also report the state-of-the-art results based on recently conducted experiments from both industry and academia. Next, we focus on discussing the main challenges in analyzing, designing and implementing IRS-aided wireless networks, including capacity characterization, joint active and passive beamforming optimization, channel acquisition, IRS deployment, hardware imperfections, and so on. This is then followed by several selected case studies of IRS-aided wireless system design to show its practical performance gains and draw useful insights. Finally, we discuss other extensions and point out promising directions for future research and investigation.

Biography:

Dr. Rui Zhang (IEEE Fellow) received the B.Eng. (First-Class Hons.) and M.Eng. degrees from National University of Singapore, and the Ph.D. degree from Stanford University, Stanford, CA USA, all in electrical engineering. From 2007 to 2009, he worked as a researcher at the Institute for Infocomm Research, ASTAR, Singapore. Since 2010, he has joined the Department of Electrical and Computer Engineering of National University of Singapore, where he is now a Professor in the Faculty of Engineering. His current research interests include UAV/satellite communication, wireless power transfer, reconfigurable MIMO, and optimization methods. He has published over 370 papers, which have been cited more than 30,000 times. He has been listed as a Highly Cited Researcher by Thomson Reuters/Clarivate Analytics since 2015. He was the recipient of the 6th IEEE Communications Society Asia-Pacific Region Best Young Researcher Award in 2011, and the Young Researcher Award of National University of Singapore in 2015. He was the co-recipient of the IEEE Marconi Prize Paper Award in Wireless Communications in 2015, the IEEE Communications Society Asia-Pacific Region Best Paper Award in 2016, the IEEE Signal Processing Society Best Paper Award in 2016, the IEEE Communications Society Heinrich Hertz Prize Paper Award in 2017, the IEEE Signal Processing Society Donald G. Fink Overview Paper Award in 2017, and the IEEE Technical Committee on Green Communications & Computing (TCGCC) Best Journal Paper Award in 2017. His co-authored paper also received the IEEE Signal Processing Society Young Author Best Paper Award in 2017. He served for over 30 international conferences as the TPC Co-Chair or an Organizing Committee Member, and as the guest editor for 3 special issues in IEEE Journal of Selected Topics in Signal Processing and IEEE Journal on Selected Areas in Communications. He served as an elected member of the IEEE Signal Processing Society SPCOM and SAM Technical Committees, and the Vice Chair of the IEEE Communications Society Asia-Pacific Board Technical Affairs Committee. He served as an editor for the IEEE Transactions on Wireless Communications, IEEE Journal on Selected Areas in Communications (Green Communications and Networking Series), and IEEE Transactions on Signal Processing. He is now an editor for the IEEE Transactions on Communications, and IEEE Transactions on Green Communications and Networking. He serves as a member of the Steering Committee of the IEEE Wireless Communications Letters. He is a Distinguished Lecturer of IEEE Signal Processing Society and IEEE Communications Society.
Monday, 25 May 2020
9:00 - 12:15 • Room 03

TUT03 - Machine Learning for Future Wireless Networks

Presenters: Kwang-Cheng Chen (University of South Florida, USA)

With amazing advances of machine learning technology, a new technological paradigm emerges. This tutorial presents a holistic comprehension about machine learning knowledge and the methodology to apply machine learning to assist, enhance, and enable wireless networking functionalities. It further introduces a new research area about wireless networking for smart machines of artificial intelligence. Future network architecture to fully utilize the machine learning capacity serves the closing focus of this tutorial. This tutorial is organized in a vertical manner by introducing machine learning techniques, while showing examples to apply after each machine learning technique and orienting criterion/conditions to apply each machine learning technique.

Biography:

Kwang-Cheng Chen has been a Professor at the Department of Electrical Engineering, University of South Florida, since 2016. From 1987 to 2016, Dr. Chen worked with SSE, Communications Satellite Corp., IBM Thomas J. Watson Research Center, National Tsing Hua University, HP Labs., and National Taiwan University in mobile communications and networks. He visited TU Delft (1998), Aalborg University (2008), Sungkyunkwan University (2013), and Massachusetts Institute of Technology (2012-2013, 2015-2016). He founded a wireless IC design company in 2001, which was acquired by MediaTek Inc. in 2004. He has been actively involving in the organization of various IEEE conferences and serving editorships with a few IEEE journals (most recently as a series editor on Data Science and AI for Communications in the IEEE Communications Magazine), together with various IEEE volunteer services to the IEEE, Communications Society, Vehicular Technology Society, and Signal Processing Society, such as founding the Technical Committee on Social Networks in the IEEE Communications Society. Dr. Chen also has contributed essential technology to various international standards, namely IEEE 802 wireless LANs, Bluetooth, LTE and LTE-A, 5G-NR, and ITU-T FG ML5G. He has authored and co-authored over 300 IEEE publications, 4 books published by Wiley and River (most recently, Artificial Intelligence in Wireless Robotics, 2019), and more than 24 granted US patents. Dr. Chen is an IEEE Fellow and has received a number of awards including 2011 IEEE COMSOC WTC Recognition Award, 2014 IEEE Jack Neubauer Memorial Award, 2014 IEEE COMSOC AP Outstanding Paper Award. Dr. Chen’s current research interests include wireless networks, artificial intelligence and machine learning, IoT/CPS, social networks and data analytics, and cybersecurity.
Compounding operational complexity, diverging service requirements and exploding degrees of freedom in hybrid terrestrial and aerial architecture being conceived for 6G combined with steadily shrinking profit margins, hinge the technical and financial viability of future mobile networks on achieving zero touch automation. However, despite the recent success of AI for enabling automation in other domains, in mobile networks attempts towards AI powered zero touch automation are hampered by two fundamental challenges: 1) Sparsity of the training data in mobile networks: unlike many other native applications of AI, real cellular data for training AI is generally both scarce and sparse. This is because operators generally do not test a wide range of parameters on live network, and whatever data they have cannot be extracted and shared easily. This limits the utility of some of the most powerful AI tools such as DNN for solving many practical problems in mobile networks; 2) Hyper-parameterization native to mobile networks: even before the training can begin, designing and tuning the hyperparameters of an AI model to deliver reliable performance in presence of dynamics that are hallmark of mobile networks remains more of an art than science. In bulk of AI based solutions for mobile networks in literature, hyper-parameterization is either done through hit and trial based human effort or simply already hyper-parameterized models are borrowed from other domains and then trained on mobile network data. Furthermore, current approach to hyper-parameterization requires advanced expertise both in mobile network domain knowledge and machine learning, making it a generally unachievable task for an expert in either domain. Without addressing these two challenges explicitly and timely, despite the hype and hopes, full potential of AI cannot be harnessed for mobile networks. The goal of this tutorial is to first introduce the zero-touch automation framework and then provide an in-depth analysis of sparsity and hyper-parameterization problems and their multi-faceted implications on the performance of AI based solutions in mobile networks. Leveraging insights and latest results from several ongoing projects focused on zero touch automation, the rest of the tutorial then focuses on a set of promising approaches for addressing the data sparsity and hyper-parameter design challenges in mobile networks. Some of the approaches to be discussed include, one shot learning, inductive transfer learning, transductive transfer learning, leveraging different types of network geometries, use of generative adversarial networks (GANs) and novel methods for realistic synthetic data generation to address the sparsity challenge. Auto-ML techniques such as Neuro-Evolutionary Algorithm to design and tune DNN, Reinforcement Learning to design and tune DNN, Federated Learning and Bayesian optimization as a tool to solve hyper-parameterization problem will be discussed. The tutorial will conclude with introduction of new real problems of mobile industry interest that require AI based solutions and potential solution approaches and opportunities therein to trigger the much-needed focused research effort in mobile network native AI to ultimately enable zero touch automation.

Biographies:

Dr. Ali Imran is founding director of AI4Networks Research Centre (www.ai4networks.com) at the University of Oklahoma. AI4networks is the first academic centre in the world exclusively created for research on zero touch deep network automation. The centre is host to TurboRAN, a purpose-built cellular testbed for enabling experimental research on zero touch automation—and numerous multinational R&D projects on AI for wireless networks. Dr. Imran is also co-founder of a start-up AISON (www.aison.co) that has launched world’s first deep AI enabled RAN automation and performance optimization solution currently being evaluated by several operators around the world for its game changing gains over current SON paradigm. Dr Imran’s research on network automation has played pioneering role in this area and has been supported by over $4M in nationally and internationally competitive research grants. On this topic, he has published over 100 refereed journal and conference papers and has several patents granted and pending. His work includes some of the most influential publications in the area of mobile network automation. The impact of his work on network automation has been recognized by several prestigious awards such as VPR Outstanding International Impact Award at the University of Oklahoma, 2018, IEEE Green ICT YP International award 2017, and best paper award IEEE CAMAD 2013. In 2019 he has been named William H. Barkow Presidential Professor at the University of Oklahoma for his contributions to this field. Dr. Imran is routinely invited to serves as an advisor to key stakeholder in cellular network eco-system and as a speaker and a panellist on international industry fora and academic conferences on this topic. He is an Associate Fellow of Higher Education Academy (AFHEA), UK; president of ComSoc Tulsa Chapter; Senior Member IEEE, Member of Advisory Board for Special Technical Community on Big Data at IEEE Computer Society, and board member of ITERA. For more detailed bio of Dr. Imran see: www.ali-imran.org.

Dr. Muhammad Imran received his M.Sc. (Distinction) and Ph.D. degrees from Imperial College London, UK, in 2002 and 2007, respectively. He is currently a Chair Professor at the University of Oklahoma and visiting Professor at 5GIC Surrey. He is the founding director of the Communications Sensing and Imaging Research labs and a regular invited speaker on several 5G related talks, industrial panels and policy events for wireless communication technology. He has a global collaborative research network spanning both academia and key industrial players in the field of wireless communications. He has led a number of multimillion pounds international research projects encompassing the areas of Internet of Things (IoT), energy efficiency, fundamental performance limits, sensor networks and self-organizing cellular networks. He led the physical layer research for 5G innovation centre at Surrey (an outdoor cellular testbed developed at University of Surrey with a grant of above $50m). He has supervised 40+ successful Ph.D. graduates and published over 400 peer-reviewed research papers including more than 30 IEEE transactions. He is associate editor of IEEE Transactions on Communications, IEEE Access, IEEE Communications Letters and guest editor of several special issues in IEEE journals. He is a chair for several tracks in highly reputed international conferences and workshops including forthcoming IEEE ICC 2020 (co-chair for Next Generation Networking Symposium). He has been awarded IEEE Comsoc’s Fred Ellersick award 2014 and FEPS Learning and Teaching award 2014. He has also been shortlisted for Wharton-QS Stars Reimagine Education Awards 2014. He is a senior member of IEEE, Fellow of IET and a Senior Fellow of Higher Education Academy (SFHEA), UK.

TUTORIALS

Monday, 25 May 2020
9:00 - 12:15 • Room 04

TUT05 - Moving Towards Zero-Touch Automation, A Key Enabler for 6G: The Challenges & Opportunities

Presenters: Ali Imran (University of Oklahoma, USA)
Muhammad Ali Imran (University of Glasgow, United Kingdom (Great Britain))
TUT06 - B5G: A New Frontier for Non-Orthogonal Multiple Access

Presenter: Zhiguo Ding (University of Manchester, United Kingdom (Great Britain))

Non-orthogonal multiple access (NOMA) is an essential enabling technology for future wireless networks to meet the heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high throughput. The key idea behind NOMA is to serve multiple users in the same resource block, such as a time slot, subcarrier, or spreading code. The NOMA principle provides a general framework, where various recently proposed 5G multiple access techniques can be viewed as special cases. Recent demonstrations by industry show that the use of NOMA can significantly improve the spectral efficiency of mobile networks. Because of its superior performance, NOMA has been also recently included in 3GPP Releases 14 and 15 for downlink transmission, proposed to Release 16 for uplink transmission, and included into the next generation digital TV standard, e.g. ATSC (Advanced Television Systems Committee) 3.0. This tutorial is to provide an overview of the latest research results and innovations in NOMA technologies as well as their applications. Future research challenges regarding NOMA in B5G and beyond are also presented.

Biography:

Zhiguo Ding (S’03-M’05) received his B.Eng in Electrical Engineering from the Beijing University of Posts and Telecommunications in 2000, and the Ph.D degree in Electrical Engineering from Imperial College London in 2005. From Jul. 2005 to Apr. 2018, he was working in Queen's University Belfast, Imperial College, Newcastle University and Lancaster University. Since Apr. 2018, he has been with the University of Manchester as a Professor in Communications. From Oct. 2012 to Sept. 2018, he has also been an academic visitor in Princeton University. Dr Ding’s research interests are B5G networks, game theory, cooperative and energy harvesting networks and statistical signal processing. He is serving as an Editor for IEEE Transactions on Communications, IEEE Transactions on Vehicular Technology, and Journal of Wireless Communications and Mobile Computing, and was an Editor for IEEE Wireless Communication Letters, IEEE Communication Letters from 2013 to 2016. He received the best paper award in IET ICWMC-2009 and IEEE WCSP-2014, the EU Marie Curie Fellowship 2012-2014, the Top IEEE TVT Editor 2017, IEEE Heinrich Hertz Award 2018, IEEE Jack Neubauer Memorial Award 2018.
Monday, 25 May 2020
14:00 - 17:15 • Room 01

TUT04 - Wireless Transmission for Advanced Internet of Things: A Unifying Data-Oriented Approach

Presenters: Hong-Chuan Yang (University of Victoria, Canada)
Mohamed-Slim Alouini (King Abdullah University of Science and Technology (KAUST), Saudi Arabia)

Wireless communication systems will play an essential role in data transmission for future Internet of Things (IoT). The design and optimization of wireless transmission strategies for diverse IoT applications that generate data of variable sizes and dramatically different quality of service requirements are of critical contemporary interest. In this proposed tutorial, we present a unique data-oriented approach for wireless transmission system design, specifically targeting vertical IoT applications that demand ultra-reliable low-latency and extremely high energy efficiency. We introduce novel data-oriented metrics to characterize theoretical performance limits for various transmission scenarios. These performance metrics are also applied to the analysis and design of practical transmission schemes. The analysis is also generalized to cognitive secondary transmission. The data-oriented approach offers important new insights and leads to interesting new research directions. Through this tutorial, the attendees can obtain a brand new perspective to the analysis and optimization of wireless transmission technologies for advanced IoT applications.

Biographies:

Dr. Hong-Chuan Yang (Senior Member IEEE) received the Ph.D. degree in electrical engineering from the University of Minnesota in 2003. He is a professor of the Department of Electrical and Computer Engineering at the University of Victoria, Canada. From 1995 to 1998, He was a Research Associate at the Science and Technology Information Center (STIC) of the Ministry of Posts & Telecomm. (MPT), Beijing, China. His current work mainly focuses on different aspects of wireless communications, with special emphasis on channel modeling, diversity techniques, system performance evaluation, cross-layer design, and energy efficient communications. He has published over 200 journal and conference papers. He is the author of the book *Introduction to Digital Wireless Communications* by IET press and the co-author of the book *Order Statistics in Wireless Communications*. He is a registered professional engineer (P.Eng) in British Columbia, Canada.

Dr. Mohamed-Slim Alouini (Fellow IEEE) received the Ph.D. degree in electrical engineering from the California Institute of Technology (Caltech) in 1998. He also received the Habilitation degree from the Universite Pierre et Marie Curie in 2003. Dr. Alouini started his academic career at the University of Minnesota in 1998. In 2005, he joined Texas A&M University at Qatar, Doha, and in 2009, he was appointed as Professor of Electrical Engineering at KAUST, Thuwal, Mekkah Province, Saudi Arabia, where he is responsible for research and teaching in the areas of Communication Theory and Applied Probability. More specifically, his research interests include design and performance analysis of diversity combining techniques, MIMO techniques, multi-hop/cooperative communications systems, cognitive radio systems, and multi-resolution, hierarchical and adaptive modulation schemes. Dr. Alouini has published several papers on the above subjects, and he is co-author of the textbook *Digital Communication over Fading Channels* published by Wiley Interscience. He is a Fellow of the IEEE, a member of the Thomson ISI Web of Knowledge list of Highly Cited Researchers, and a corecipient of best paper awards in eight IEEE conferences (including ICC, GLOBECOM, VTC, and PIMRC).
TUT07 - UAV Communications in 5G and Beyond: Integration of Sensing, Control, and Learning

Presenters: Lingyang Song (Peking University, China)
Zhu Han (University of Houston, USA)
Hongliang Zhang (University of Houston, USA)

The emerging unmanned aerial vehicles (UAVs) have been playing an increasing role in the military, public, and civil applications. Very recently, 3GPP has approved the study item on enhanced support to seamlessly integrate UAVs into future cellular networks. Unlike terrestrial cellular networks, UAV communications have many distinctive features such as high dynamic network topologies and weakly connected communication links. In addition, they still suffer from some practical constraints such as battery power, no-fly zone, etc. As such, many standards, protocols, and design methodologies used in terrestrial wireless networks are not directly applicable to airborne communication networks. Therefore, it is essential to develop new communication, signal processing, and optimization techniques in support of the ultra-reliable and real-time sensing applications, but enabling high data-rate transmissions to assist the terrestrial communications in LTE. Typically, to integrate UAVs into cellular networks, one needs to consider two main scenarios of UAV applications as follows.

First, dedicated UAVs, also called drones, can be used as communication platforms in the way as wireless access points or relays nodes, to further assist the terrestrial communications. This type of applications can be referred to as UAV Assisted Cellular Communications. UAV-assisted cellular communications have numerous use cases, including traffic offloading, wireless backhauling, swift service recovery after natural disasters, emergency response, rescue and search, information dissemination/broadcasting, and data collection from ground sensors for machine-type communications. However, different from traditional cellular networks, how to plan the time-variant placements of the UAVs served as base station (BS)/relay is very challenging due to the complicated 3D propagation environments as well as many other practical constraints such as power and flying speed. In addition, spectrum sharing with existing cellular networks is another interesting topic to investigate.

Second type of application is to exploit UAVs for sensing purposes due to its advantages of on-demand flexible deployment, larger service coverage compared with the conventional fixed sensor nodes, and ability to hover. Specially, UAVs, equipped with cameras or sensors, have come into our daily lives to execute critical real-time sensing tasks, such as smart agriculture, security monitoring, forest fire detection, and traffic surveillance. Due to the limited computation capability of UAVs, the real-time sensory data needs to be transmitted to the BS for real-time data processing. In this regard, the cellular networks are necessarily committed to support the data transmission for UAVs, which we refer to as Cellular assisted UAV Sensing. Nevertheless, to support real-time sensing streaming, it is desirable to design joint sensing and communication protocols, develop novel beamforming and estimation algorithms, and study efficient distributed resource optimization methods.

The aim of this tutorial is to bring together control, signal processing engineers, computer and information scientists, applied mathematicians and statisticians, as well as systems engineers to carve out the role that analytical and experimental engineering has to play in UAV research and development. This proposal will emphasize on UAV technologies and applications for cellular networks. There are four main objectives. The first objective is to provide an introduction to the UAV paradigm, from 5G and beyond communication perspective. The second objective is to introduce the key methods, including optimization, game, and graph theory, for UAV applications, in a comprehensive way. The third objective is to discuss UAV assisted cellular communications. The fourth objective is to present the state-of-the-art for cellular network assisted UAV sensing. Many examples will be illustrated in details so as to provide wide scope for general audiences.

Biographies:

Lingyang Song received his PhD from the University of York, UK, in 2007, where he received the K. M. Stott Prize for excellent research. He worked as a postdoctoral research fellow at the University of Oslo, Norway, and Harvard University, until rejoining Philips Research UK in March 2008. In May 2009, he joined the School of Electronics Engineering and Computer Science, Peking University, China, as a full professor. His main research interests include cooperative and cognitive communications, physical layer security, and wireless ad hoc/sensor networks. He published extensively, wrote 6 text books, and is co-inventor of a number of patents (standard contributions). He received 9 paper awards in IEEE journal and conferences including IEEE JSAC 2016, IEEE WCNC 2012, ICC 2014, Glocom 2014, ICC 2015, etc. He is currently on the Editorial Board of IEEE Transactions on Wireless Communications and Journal of Network and Computer Applications. He served as the TPC co-chairs for the International Conference on Ubiquitous and Future Networks (ICUFN2011/2012), symposium co-chairs in the International Wireless Communications and Mobile Computing Conference (IWCMC 2009/2010), IEEE International Conference on Communication Technology (ICCT2011), and IEEE International Conference on Communications (ICC 2014, 2015). He is the recipient of 2012 IEEE Asia Pacific (AP) Young Researcher Award. Dr. Song is a senior member of IEEE, and IEEE ComSoc distinguished lecturer since 2015.

Zhu Han (S’01–M’04–SM’09–F’14) received the B.S. degree in electronic engineering from Tsinghua University, in 1997, and the M.S. and Ph.D. degrees in electrical engineering from the University of Maryland, College Park, in 1999 and 2003, respectively. From 2000 to 2002, he was an R&D Engineer of JDSU, Germantown, Maryland. From 2003 to 2006, he was a Research Associate at the University of Maryland. From 2006 to 2008, he was an assistant professor at Boise State University, Idaho. Currently, he is a Professor in Electrical and Computer Engineering Department as well as Computer Science Department at the University of Houston, Texas. His research interests include wireless resource allocation and management, wireless communications and networking, game theory, wireless multimedia, security, and smart grid communication. Dr. Han received an NSF Career Award in 2010, the Fred W. Ellersick Prize of the IEEE Communication Society in 2011, the EURASIP Best Paper Award for the Journal on Advances in Signal Processing in 2015, several best paper awards in IEEE conferences, and is currently an IEEE Communications Society Distinguished Lecturer. Dr. Han is top 1% highly cited researcher according to Web of Science 2017.

Hongliang Zhang (S’15–M’19) received the B.S. and Ph.D. degrees at the School of Electrical Engineering and Computer Science at Peking University, in 2014 and 2019, respectively. Currently, he is a Postdoctoral Fellow in the Electrical and Computer Engineering Department as well as the Computer Science Department at the University of Houston, Texas. His current research interest includes cooperative communications, Internet-of-Things networks, hypergraph theory, and optimization theory. He has served as a TPC Member for many IEEE conferences, such as Globecom, ICC, and WCNC. He is currently an Editor for IET Communications. He also serves as a Guest Editor for IEEE IoT-J special issue on Internet of UAVs over Cellular Networks.
Emerging mass transportation systems – such as self-driving cars, high-speed trains, drones, flying cars, and supersonic flight – will challenge the design of future wireless networks due to high-mobility environments: a large number of high-mobility users require high data rates and low latencies. The physical layer modulation technique is a key design component to meet the system requirements of high mobility. Currently, orthogonal frequency division multiplexing (OFDM) is the modulation scheme deployed in 4G long term evolution (LTE) mobile systems, where the wireless channel typically exhibits time-varying multipath fading. OFDM can only achieve a near-capacity performance over a doubly dispersive channel with a low Doppler effect, but suffers heavy degradations under high Doppler conditions, typically found in high-mobility environments. Orthogonal time frequency space (OTFS) modulation has been recently proposed by Hadani et al. at WCNC’17, San Francisco. It was shown to provide significant advantages over OFDM in doubly dispersive channels. OTFS multiplexes each information symbol over a 2D orthogonal basis functions, specifically designed to combat the dynamics of the time-varying multipath channels. As a result, all information symbols experience a constant flat fading equivalent channel. OTFS is only in its infancy, leaving many opportunities for significant developments on both practical and theoretical fronts.

Biographies:

Emanuele Viterbo (F’2011) received his degree (Laurea) in Electrical Engineering in 1989 and his Ph.D. in 1995 in Electrical Engineering, both from the Politecnico di Torino, Torino, Italy. From 1990 to 1992 he was with the European Patent Office, The Hague, The Netherlands, as a patent examiner in the field of dynamic recording and error-control coding. Between 1995 and 1997 he held a post-doctoral position in the Dipartimento di Elettronica of the Politecnico di Torino. In 1997-98 he was a post-doctoral research fellow in the Information Sciences Research Center of AT&T Research, Florham Park, NJ, USA. He became first Assistant Professor (1998) then Associate Professor (2005) in Dipartimento di Elettronica at Politecnico di Torino. In 2006 he became Full Professor in DEIS at University of Calabria, Italy. From September 2010 he is Professor in the ECSE Department and Associate Dean Graduate Research of the Faculty of Engineering at Monash University, Melbourne, Australia. Emanuele Viterbo is a 2011 Fellow of the IEEE, an ISI Highly Cited Researcher and Member of the Board of Governors of the IEEE Information Theory Society (2011-2013 and 2014-2018). He served as Associate Editor of IEEE Transactions on Information Theory, European Transactions on Telecommunications and Journal of Communications and Networks. His main research interests are in lattice codes for the Gaussian and fading channels, algebraic coding theory, algebraic space-time coding, digital terrestrial television broadcasting, and digital magnetic recording.

Yi Hong (S’00–M’05–SM’10) is currently a Senior lecturer at the Department of Electrical and Computer Systems Eng., Monash University, Melbourne, Australia. She obtained her Ph.D. degree in Electrical Engineering and Telecommunications from the University of New South Wales (UNSW), Sydney, and received the NICTA-ACoRN Earlier Career Researcher Award at the Australian Communication Theory Workshop, Adelaide, Australia, 2007. Dr. Hong was an Associate Editor for IEEE Wireless Communication Letters and Transactions on Emerging Telecommunications Technologies (ETT). She was the General Chair of IEEE Information Theory Workshop 2014, Hobart; the Technical Program Committee Chair of Australian Communications Theory Workshop 2011, Melbourne; and the Publicity Chair at the IEEE Information Theory Workshop 2009, Sicily. She was a Technical Program Committee member for many IEEE leading conferences. Her research interests include communication theory, coding and information theory with applications to telecommunication engineering.
TUTORIALS

Monday, 25 May 2020
14:00 - 17:15 • Room 04

TUT09 - URLLC for 5G and Beyond: Physical, MAC and Network Design and Solutions

Presenters: Branka Vucetic, Yonghui Li and Mahyar Shirvanimoghaddam (University of Sydney, Australia)
Rana Abbas (The University of Sydney, Australia)
Changyang She (University of Sydney, Australia)

The world is currently witnessing the rise of many mission critical applications such as tele-surgery, intelligent transportation, industry automation, virtual reality and augmented reality, vehicular communications, etc. Some of these applications will be enabled by the fifth-generation of cellular networks (5G), which will provide the required ultra-reliable low-latency communication (URLLC). However, guaranteeing these stringent reliability and end-to-end latency requirements continues to prove to be quite challenging, due to the significant shift in paradigms required in both theoretical fundamentals of wireless communications as well as design principles. In this tutorial, we cover the challenges and potential solutions for 5G and beyond 5G to support URLLC, in terms of error control coding improving reliability, channel access protocols for reducing latency, and multi-connectivity for improving network availability.

Biographies:

Branka Vucetic [F] is an ARC Laureate Fellow and Professor of Telecommunications, Director of the Centre of Excellence in Telecommunications at the University of Sydney. During her career, she has held research and academic positions in Yugoslavia, Australia, UK and China. Her research interests include coding, communication theory and signal processing and their applications in wireless networks and industrial internet of things. Prof Vucetic co-authored four books and more than four hundred papers in telecommunications journals and conference proceedings. She is a Fellow of the Australian Academy of Technological Sciences and Engineering and a Fellow of the IEEE.

Yonghui Li [F] received his PhD degree in November 2002 from Beijing University of Aeronautics and Astronautics. Since 2003, he has been with the Centre of Excellence in Telecommunications, the University of Sydney, Australia. He is now a Professor in School of Electrical and Information Engineering, University of Sydney. He is the recipient of the Australian Queen Elizabeth II Fellowship in 2008 and the Australian Future Fellowship in 2012. His current research interests are in the area of wireless communications, with a particular focus on MIMO, millimeter wave communications, machine to machine communications, coding techniques and cooperative communications. He has received three IEEE best paper awards. He is a Fellow of IEEE.

Mahyar Shirvanimoghaddam [M] received the B.Sc. degree (1st Class Honours) from the University of Tehran, Iran, in September 2008, the M.Sc. degree (1st Class Honours) from Sharif University of Technology, Iran, in October 2010, and the Ph.D. degree from The University of Sydney, Australia, in January 2015, all in electrical engineering. He then held a postdoctoral research position at the School of Electrical Engineering and Computing at the University of Newcastle, Australia. He is currently an Academic Fellow at the School of Electrical and Information Engineering, The University of Sydney, Australia. His general research interests include channel coding techniques, multiple access techniques, and machine-to-machine Communications.

Rana Abbas [M] received the M.E. in 2013 and the Ph.D. degree in 2018, both in electrical engineering from The University of Sydney. She is currently a researcher at the Centre of IoT and Telecommunications, at The University of Sydney. Her research interests include channel coding, random access, machine type communications and IoT. She is the recipient of the Australian Postgraduate Awards Scholarship and the Norman Price scholarship from the Centre of Excellence in Telecommunications, School of Electrical and Information Engineering, The University of Sydney. She is also the winner of the Best Paper Award at the IEEE PIMRC, 2018.

Changyang She [M] received his B. Eng and Ph.D. degrees in Electronics and Information Engineering from Beihang University, Beijing, China in 2012 and 2017, respectively. He was a postdoctoral research fellow with Singapore University of Technology and Design. He is now a postdoctoral research Associate with the University of Sydney. His research interests lie in the areas of ultra-reliable and low-latency communications, tactile internet, big data for resource allocation in wireless networks and energy efficient transmission in 5G systems. He has given three tutorials on ultra-reliable and low-latency communications in IEEE/CIC International Conference on Communications in China (ICCC) 2017, IEEE Vehicular Technology Conference (VTC) Fall 2018, and IEEE Personal, Indoor and Mobile Radio Communications (PIMRC) 2018.

IEEE WCNC 2020 ***
Monday, 25 May 2020
14:00 - 17:15 • Room 05

TUT10- NOMA-Based Random Access for Massive MTC in 5G

Presenter: Jinho Choi (Deakin University, Australia)

Machine-type communication (MTC) becomes a key element for the Internet of Things (IoT) as it enables to support massive IoT connectivity in 5th generation (5G) and future wireless systems. Due to the sparse device activity, uncoordinated transmission schemes (e.g., random access) are considered for most existing MTC schemes in standards. In general, since the performance of MTC is limited by the system bandwidth, a wide system bandwidth is required to support a large number of MTC/IoT devices. To increase the number of MTC/IoT devices with a given system bandwidth, non-orthogonal multiple access (NOMA), which has been extensively studied to improve the spectral efficiency for conventional or human-type communication (HTC), can be applied to MTC. In this tutorial, we demonstrate how the notion of NOMA can be applied to MTC in 5G in order to support a large number of IoT devices. To this end, we present various NOMA-based random access schemes for MTC and explain how they can be designed and analyzed.

Biography:

Jinho Choi was born in Seoul, Korea. He received B.E. (magna cum laude) degree in electronics engineering in 1989 from Sogang University, Seoul, and M.S.E. and Ph.D. degrees in electrical engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1991 and 1994, respectively. He is with the School of Information Technology, Deakin University, Burwood, VIC 3125, Australia, as a Professor. Prior to joining Deakin in 2018, he was with Swansea University, United Kingdom, as a Professor/Chair in Wireless, and Gwangju Institute of Science and Technology (GIST), Korea, as a Professor. His research interests include the Internet of Things (IoT), wireless communications, and statistical signal processing. He authored two books published by Cambridge University Press in 2006 and 2010. Prof. Choi received the 1999 Best Paper Award for Signal Processing from EURASIP, 2009 Best Paper Award from WPMC (Conference), and is Senior Member of IEEE. Currently, he is an Editor of IEEE Trans. Communications and IEEE Wireless Communications Letters and had served as an Associate Editor or Editor of other journals including IEEE Communications Letters, Journal of Communications and Networks (JCN), IEEE Trans. Vehicular Technology, and ETRI journal.
Wednesday, 27 May 2020
14:00 - 15:30 • Room 11

DEMO-S1: WCNC 2020 Demo
Chair: Sang-Hyo Kim
(Sungkyunkwan University, South Korea)

MmWave Lens MIMO
Sang-Hyun Park and Dongsoo Jun
(Yonsei University, South Korea)
Byoungnam Kim (Sensor View, South Korea)
Dong Ku Kim and Chan-Byoung Chae
(Yonsei University, South Korea)

Millimeter-Wave Massive MIMO Testbed with Hybrid
Beamforming
MinKeun Chung, Liang Liu, Ove Edfors and
Fredrik Tufvesson (Lund University, Sweden)

In-Vessel Molecular MIMO Communications
Changmin Lee, Bonhong Koo and Chan-Byoung Chae
(Yonsei University, South Korea)

Demonstration of Reconfigurable Metasurface for
Wireless Communications
Nguyen Minh Tran, Amri Muhammad Miftahul,
Dong Soo Kang, Je Hyeon Park and Mi Hyun Lee
(Sungkyunkwan University, South Korea)
Dong In Kim (Sungkyunkwan University (SKKU), South Korea)
Kae Won Choi (Sungkyunkwan University, South Korea)

A Unified Platform of Free-Space Optics for
High-Quality Video Transmission
Hong-Bae Jeon and Hyung-Joo Moon
(Yonsei University, South Korea)
Soo-Min Kim (University of Yonsei, South Korea)
Do-Hoon Kwon, Joon-Woo Lee, Sang-Kook Han and
Chan-Byoung Chae (Yonsei University, South Korea)

Wireless VR/Haptic Open Platform for Multimodal
Teleoperation
Taehun Jung and Hanju Yoo (Yonsei University, South Korea)
Youna Jin and Chae Eun Rhee (Inha University, South Korea)
Chan-Byoung Chae (Yonsei University, South Korea)

A Network Slicing Solution for Flexible Resource
Allocation in SDN-based WLANs
Estefania Coronado (Fondazione Bruno Kessler, Italy)
Blas Gómez (University of Castilla-La Mancha, Spain)
Roberto Riggio (Fondazione Bruno Kessler, Italy)

Demo Abstract: Mobility Enhanced RPL for
General Mobility Scenarios
Hongchan Kim, Jiseok Youn and Hyung-Sin Kim
(Seoul National University, South Korea)
Sung-Guk Yoon (Soongsil University, South Korea)
Saewoong Bahk (Seoul National University, South Korea)

A Reinforcement Learning Based Flexible Duplex
Systems for B5G with Sub-6 GHz
Soo-Min Kim (University of Yonsei, South Korea)
Han Cha, Seong-Lyun Kim and Chan-Byoung Chae
(Yonsei University, South Korea)

Experimental Study of Capture Effect in Smartphones
and Wi-Fi Access Points
Egor Onore Endovitskiy (Moscow Institute of Physics
and Technology & Institute for Information Transmission
Problems of Russian Academy of Sciences, Russia)
Evgeny Khorov (IITP RAS, Russia)
Aleksey Kureev (IITP RAS & MIPT, Russia)
Ilya Levitsky (IITP & IITP RAS, Canada)

Latency Control for Interactive Five Degree-of-Freedom
View Exploration Systems
Won-Ki Seo (Inha University, South Korea)
Taehun Jung, Hanju Yoo and Chan-Byoung Chae
(Yonsei University, South Korea)
Chae Eun Rhee (Inha University, South Korea)
KICS as a flagship and the largest ICT society in Korea

KICS is the largest ICT academic society in Korea with over 26,000 members, 50 affiliated companies, 8 domestic and 5 overseas chapters, and 30 technical activity groups.

As the principal driving force of Korea's world-class ICT, KICS provides open networks and motivates universities, corporations, government, and research institutes to engage in academic activities, technical cooperation, and policy reviews in the fields of communications/broadcasting and ICT convergence industries.

And now, as the fourth industrial revolution begins, KICS is opening up a new future for ICT with the pride and passion that enabled Korea to astonish the world with its premier information and communications technology.

KICS at the heart of the fourth industrial revolution
Samsung 5G, Unlocking Possibilities

For more than a decade, Samsung has been a pioneer of 5G, driving technologies with our diverse activities in standardization and delivering industry leading 5G products and solutions. Join us in the breathtaking moment of transforming 5G into a reality.

www.samsungnetworks.com www.youtube.com/samsung5g
The IEEE Wireless Communications and Networking Conference (WCNC) is one of the premier annual events of IEEE in the wireless research arena bringing together researchers, academics, and industry professionals. The 2021 edition of this important event will be held in Nanjing, China. WCNC 2021 will include technical sessions, tutorials, workshops, and technology and business panels. You are invited to submit papers, and proposals for panels, tutorials, and workshops, in all areas of wireless communications, networks, services, and applications. The proposals for panels, tutorials, and workshops should be sent to the Chairs listed below. The submissions of technical papers should be made on EDAS. Potential topics include, but are not limited to:

Track 1: Fundamentals and PHY
- Channel modeling, characterization and estimation
- Modulation, coding, diversity, equalization, synchronization
- Multi-carrier modulation, waveform design
- Wireless Communications through Reconfigurable Intelligent Surfaces
- AI, machine learning and data analytics for wireless communications
- Interference modeling, management, cancellation and alignment
- PHY strategies for low-rate, sporadic and asynchronous communications
- MIMO, massive MIMO and cloud-RAN
- Cooperative, device-to-device and multi-hop communication
- Cognitive radio, spectrum sensing
- Content caching and storage in wireless networks
- PHY layer design for cellular, wireless LAN, ad hoc and sensor networks
- Energy efficient and energy harvesting PHY layer design
- Joint information and energy transmission
- PHY layer security and privacy
- Ultra-wideband, mmWave and sub-THz communication
- Information-theoretic aspects of wireless communications
- Signal processing for wireless communications
- Molecular and nano communications
- Beyond 5G and 6G
- Full duplexing

Track 2: MAC and Cross-Layer Design
- Wireless MAC protocols for beyond 5G: design, analysis, and optimization
- AI, machine learning and data analytics for MAC and cross-layer design
- Cognitive and cooperative MAC
- MAC for mesh, ad hoc, relay and sensor networks
- Scheduling and radio resource management
- Cross-layer MAC design
- MAC design for Non-Terrestrial Networks and Aerial Networks
- Software defined radio, RFID MAC
- QoS support and energy efficient MAC
- MAC protocol for energy harvesting wireless networks
- MAC design for multiter cellular/small cell networks
- Multiple access in machine-to-machine communication
- MAC for cloud-RAN
- MAC protocols for molecular and nano networks
- MAC protocols for mmWave networks
- Full-duplex MAC design
- Cross-layer design for massive MIMO and multiuser MIMO networks

Track 3: Wireless Networks
- Software-defined mobile/wireless networks
- Wireless network functions virtualization
- Virtual network management and orchestration
- AI, machine learning and data analytics for wireless networks
- Mobile cloud
- Fog computing and networking
- Mobile edge computing
- Mesh, relay, sensor and ad hoc networks
- Routing and congestion control in wireless networks
- Cognitive radio and networking
- Resource management and optimization
- Mobile big data and network data analytics
- Wireless network security and privacy
- Mobile social networks
- Wireless network measurements and characterization
- Wireless networking for autonomous vehicles
- Wireless networking for smart X (energy, factory, city, etc.)
- IoT wireless networking

Track 4: Emerging Technologies, Architectures and Services
- Wireless networks empowered by reconfigurable intelligent surfaces
- Age of Information in Real-time Systems and Networks
- Mobile/Wireless network support for vertical industries
- Adaptive content distribution in on-demand services
- Context and location-aware wireless services and applications
- User-centric networks and adaptive services
- Wireless body area networks and e-health services
- Intelligent transportation systems
- Dynamic sensor networks for urban applications
- Wireless emergency and security systems
- Ultra-reliable communication
- Enabling regulations, standards, spectrum management
- Hybrid licensed/unlicensed spectrum access schemes
- Technologies, architectures and enabling business models for rural communications
- Satellite-based mobile access and backhaul
- Non-terrestrial, Aerial and hybrid satellite-terrestrial networks
- Testbed and prototype implementation of wireless services

IMPORTANT DATES

Full Paper Submission: 2 October 2020
Notification of Acceptance: 28 December 2020
Final Manuscript: 15 January 2021
Workshop Proposals: 31 July 2020
Tutorial Proposals: 18 September 2020
Panel Proposals: 18 September 2020

IEEE WCNC is the world premier wireless event that brings together industry professionals, academics, and individuals from government agencies and other institutions to exchange information and ideas on the advancement of wireless communications and networking technology.

https://wcnc2020.ieee-wcnc.org/